Friability and its relationship with some physical and chemical soil properties under sugar cane crop

Authors

  • Edgar Alvaro Avila P. Universidad del Tolima
  • Fabio Rodrigo Leiva B. Universidad Nacional de Colombia
  • Aquiles Enrique Darghan C. Universidad Nacional de Colombia http://orcid.org/0000-0001-5790-1684

DOI:

https://doi.org/10.22267/rcia.173402.69

Keywords:

Friability index, aggregate stability, bulk density, total porosity, pH.

Abstract

Friability is an important indicator of the physical quality of soils and it is linked to the variability of other edaphic properties. This study aimed to evaluate the relationship between friability and different physical and chemical soil properties cultivated with sugar cane. The sampling was carried out in the first two horizons (Ap and A1) of 91 sites corresponding to five soil orders (Inceptisol, Molisol, Vertisol, Alfisol and Ultisol). Ten aggregates were selected for each of the four ranges (2.0 to 4.79, 4.80 to 9.49, 9.50 to 19.00 and 19.01 to 35.70 mm) that predominated in the 182 horizons. The 7,280 aggregates were dried in a greenhouse and an oven; subsequently, subjected to compression to determine the compressive strength (CS) and the friability index that corresponded to the lower limit (FIi) of the confidence interval of the variation coefficient It was determined the mean weight diameter (WMD), the aggregation state (AS), the bulk density (AD), the total porosity (TP), the Ph, and the electrical conductivity (EC) of the soil samples. In addition, measurements of dispersion and central tendency, three-dimensional surface graphs, and a linear model were used with a completely random design using an incomplete factorial arrangement. No effect was seen from the WMD, AD, pH, or EC on the FIi; however, the AS and the TP had significant effects from the inferential point of view.

Downloads

Download data is not yet available.

References

Alaoui, A.; Lipiec, J.; Gerke, H.H. 2011. A review of the changes in the soil pore system due to soil deformation: a hydrodynamic perspective. Soil Till. Res.115 - 116: 1 - 15. doi:10.1016/j.still.2011.06.00

American Society Of Agronomy. 2002. Methods of Soil Analysis. Part 4: Physical Methods. Jacob Dane, Editor. Soil Science Society of America, Inc. Publisher Madinson, Wisconsin USA, 1692p.

American Society Of Agronomy. 1986. methods of soil analysis. Part 1: Physical and Mineralogical Methods. Second Edition. Arnold Klute, Editor. Soil Science Society of America, Inc. Publisher Madinson, Wisconsin USA, 1188p.

American Society Of Agronomy. 1996. Methods of Soil Analysis. Part 3: Chemical Methods J. M Bartels, Editor. Soil Science Society of America, Inc. Publisher Madinson, Wisconsin USA, 1390p.

Avila, E.A.; Leiva, F.R.; Darghan, E.; Madriñán. R. 2015a. Effect of aggregate size and superficial horizon differentiation on the friability index of soils cultivated with sugar cane: a multivariate approach. Agronomía Colombiana. 33(1):92 - 98. doi: 10.15446/agron.colomb.v33n1.49855.

Avila, E.A.; Leiva, F.R.; Madriñán. R. 2015b. Friability and its relationship with clay and organic carbon in soils cultivated with sugar cane. Agronomía Colombiana. 33(2):365 - 372. doi:10.15446/agron.colomb.33(3):54068.

Braunack, M.V.; Hewitt, J.S.; Dexter. A.R. 1979. Brittle fracture of soil aggregates and the compaction of aggregate beds. J. Soil Sci. 30(4):653 - 667. doi: 10.1111/j.1365-2389.1979.tb01015.x.

Dexter, A.R.; Kroesbergen, B. 1985. Methodology for determination of tensile strength of soil aggregates. J. Agr. Eng. Res. 31(2):139 - 147. doi: 10.1016/0021-8634(85)90066-6.

Dexter, A.R.; Watts. C.W. 2001. Tensile strength and friability. In: Smith, K.A., Mullins, C.E. (Eds.), Soil and Environmental Analysis: Physical Methods. Segunda edición. Marcel Dekker Inc, New York. 405 - 433 p.

Esengun, K., G.; Erdal, O.; Gunduz; Erdal. H. 2007. An economic analysis And energy use in stake-tomato production in Tokat province of Turkey. Renew Ener. 32(11):1873 - 1881. doi: 10.1016/j.renene.2006.07.005.

Etana, A.; Larsbo, M.; Keller, T.; Arvidsson, J.; Schjønning, P.; Forkman,; Jarvis, N. 2013. Persistent subsoil compaction and its effects on preferential flow patterns in a loamy till soil. Geoderma. 192:430 - 436. doi: 10.1016/j.geoderma.2012.08.015.

Guimarães, R.M.; Tormena C.A.; Alves S.J.; Fidalski, J.; Blainski. E. 2009. Tensile strength, friability and organic carbon in an oxisol under a crop-livestock system. Scientia Agricola. (Piracicaba, Brasil.). 66(4):499 - 505. doi:10.1590/S0103-90162009000400011.

IGAC y CENICAÑA. Instituto Geográfico Agustín Codazzi y Centro de Investigación de la Caña de Azúcar de Colombia. 2006. Estudio detallado de suelos y capacidad de uso de las tierras sembradas con caña de azúcar en el Valle Geográfico del Río Cauca. Informe General, Cali, 62 p. En: http: //www.cenicana.org/publicaciones/publicaciones.; consulta: febrero, 2017.

IGAC. Instituto Geográfico Agustín Codazzi. 2006. Métodos analíticos del laboratorio de suelos. Sexta edición. Bogotá. 674 p.

IGAC. Instituto Geográfico Agustín Codazzi. 1977. Zonas de vida o formaciones vegetales de Colombia. Memoria explicativa sobre el mapa ecológico. Bogotá: IGAC. 238p.

Imhoff, S., Da Silva, P.A.; Dexter. A.R. 2002. Factors contributing to the tensile strength and friability of Oxisols. Soil Sci. Soc. Am. J. 66:1656-1661. doi: 10.2136/sssaj2002.1656.

Kim, T.H.; Kim, C.K.; Jung, S.J.; J.H. Lee. 2007. Tensile strength characteristics of contaminated and compacted sand-bentonite mixtures. Environ. Geol. 52:653 - 661. doi: 10.1007/s00254-006-0494-8.

Kohl, M. 2015. Introduction to statistical data analysis with R. First edition. Bookboon. London. 228p.

Kuncoro, P.H.; Koga, K.; Satta, N.; Muto. Y.2014. A study on the effect of compaction on transport properties of soil gas and water I: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity. Soil Till. Res. 143:172 - 179. doi: 10.1016/j.still.2014.02.006.

Larionov, G.A.; Dobrovol’skaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Litvin, L. F.; Gorobets, A. V.; Sudnitsyn. I. I. 2017. Effect of Soil Density, Tensile Strength, and Water Infiltration on the Rupture Rate of Interaggregate Bonds. Eurasian Soil Science. 50(3):335 - 340. doi: 10.1134/S1064229317010094.

Macks, S.P., Murphy, B.W. Cresswell, H.P.; Koen. T.B. 1996. Soil friability in relation to management history and suitability for direct drilling. Aust. J. Soil Res. 34:343 - 360. doi: 10.1071/SR9960343.

Munkholm, L. J. 2011. Soil friability: A review of the concept, assessment and effects of soil properties and management (Review). Geoderma. 167-168:236 - 246. doi: http: 10.1016/j.geoderma.2011.08.005.

Munkholm, L.J.; Heck, R.J.; Deen. B. 2012. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability. Geoderma. 181 - 182:22 - 29. doi:10.1016/j.geoderma.2012.02.024.

Munkholm, L.J.; Heck R.J.; Deen B.; T. Zidar. 2016. Relationship between soil aggregate strength, shape and porosity for soils under different long-term management. Geoderma. 268:52 - 59. doi: 10.1016/j.geoderma.2016.01.005.

Munkholm, L.J.; Schjønning, P.; Kay. B.D. 2002a. Tensile strength of soil cores in relation to aggregate strength, soil fragmentation and pore characteristics. Soil Till. Res. 64(1-2):125 - 135. doi: 10.1016/S0167-1987(01)00250-1.

Munkholm, L.J.; Schjønning, P.; Debosz, K.; Jensen, H.E.; Christensen. B.T. 2002b. Aggregate strength and mechanical behaviour of a sandy loam soil under long-term fertilization treatments. Eur. J. Soil Sci. 53:129 - 137. doi: 10.1046/j.1365-2389.2002.00424.x.

Munkholm, L.J.; Schjønning, P.; Petersen. C.T. 2001. Soil mechanical behavior of sandy loams in a temperate climate: case studies on long-term effects of fertilization and crop rotation. Soil Use Manage. 17:269 - 277. doi: 10.1111/j.1475-2743.2001.tb00037.x.

Rahimi, H.; Pazira, E.; Tajik. F. 2000. Effect of soil organic matter, electrical conductivity and sodium adsorption ratio on tensile strength of aggregates. Soil Till. Res. 54:145 - 153. doi: 10.1016/S0167-1987(00)00086-6.

Reis, D.; Rodriguez, C.; Pauletto, E.; Dupont, P.; Pillon, C. 2014. Tensile strength and friability of an Alfi sol under agricultural management systems. Sci. Agric. 71(2):163 - 168. doi: 10.1590/S0103-90162014000200012.

Schjǿnning, P.; De Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen. J.E. 2012. Clay dispersibility and soil friability - testing the soil clay-to-carbon saturation concept. Vadose Zone J. 11(1). doi: 10.2136/vzj2011.0067.

Sefeedpari, P.; Shokoohi, Z.; Behzadifar. Y. 2014. Energy use and carbon dioxide emission analysis in sugarcane farms: a survey on Haft-Tappeh Sugarcane Agro-Industrial Company in Iran. Journal of Cleaner Production. 83:212 - 219. doi: 10.1016/j.jclepro.2014.07.048.

SAS - Statistical Analysis System. 2009. SAS users guide; SAS/STAT – 9.3 (1) User´s guide the GLM procedure (Book excerpt), SAS Campus Drive, Cary North Carolina Rv. 27513, 206 p.

Tisdall, J.M.; Adem, H.H. 1986. Effect of water content of soil at tillage on size distribution of aggregates and infiltration. Australian Journal of Experimental Agriculture. 26:193 - 195. doi: 10.1071/EA9860193.

USDA - United States Department of Agriculture. 2010. Keys to Soil Taxonomy, Eleventh Edition. By Soil Survey Staff. USDA-NRCS, Washington, D.C., USA. 365p.

Utomo, W.H.; Dexter. A.R. 1981. Soil friability. J. Soil Sci. 32:203 - 213. doi: 10.1111/j.1365-2389.1981.tb01700.x.

Watts, C.W.; Dexter. A.R. 1998. Soil friability: theory, measurement and the effects of management and organic carbon content. Eur. J. Soil Sci. 49(1):73 - 84. doi: 10.1046/j.1365-2389.1998.00129.x.

Ye, C.; Gou, Z.; Cai, C.; Wang, J.; Deng, J. 2017. Effect of water content, bulk density, and aggregate size on mechanical characteristics of Aquults soil blocks and aggregates from subtropical China. J Soils Sediments 17(1):210 - 219. doi: 10.1007/s11368-016-1480-8.

Yoder, R.E., 1936. A direct method of aggregates analysis and a study the physical nature of erosion losses. J. Ame. Soc. Agron. 28(1):337 - 351.

Published

2017-12-20

How to Cite

Avila P., E. A., Leiva B., F. R., & Darghan C., A. E. (2017). Friability and its relationship with some physical and chemical soil properties under sugar cane crop. Revista De Ciencias Agrícolas, 34(2), 19–32. https://doi.org/10.22267/rcia.173402.69