Relationship between physical properties and the magnetic susceptibility in two soils of Valle del Cauca

Authors

DOI:

https://doi.org/10.22267/rcia.173402.70

Keywords:

Geospatial data, paramagnetism, pedotransfer functions, soil texture.

Abstract

Magnetic susceptibility (MS) is a property that determines the degree of magnetization of a material according to its composition; therefore, it has potential in the assessment of agricultural soils. This study aimed to the application of this attribute to the physical analysis of soils, by determining its correlation with some physical properties in soils of Valle del Cauca. Samples were taken in two lots of sugar cane (Chondular and Santa Rosa), of 55 and 98 hectares, respectively. The lots were analyzed by descriptive statistics and spatial and Pearson correlation between MS and the physical properties of the soil, through a geographic information system software. High spatial correlations were found between MS and the properties analyzed, particularly sand and clay content (0.9 and -0.88, respectively, P<0.001) in Chondular lot, although correlations above 50% were also found with field capacity, thermal conductivity, bulk density and total pore space. Moreover, the correlations of MS were lower in Santa Rosa lot, being the most relevant in the order of 0.59 and -0.65 (P<0.005) also for sand and clay content respectively. These correlation differences were attributed to alterations due to soil tillage in Santa Rosa lot. The determination of MS and its spatial correlation with some physical properties of agricultural soils is a technique that could simplify its characterization, particularly the proportion of sand and clay.

Downloads

Download data is not yet available.

Author Biography

Daniel I. Ospina-Salazar

Universidad del Valle

References

Barbieri, D.M.; Marques-Junior, J.; Pereira, G.T. 2008. Variabilidad espacial de atributos químicos de um argissolo para aplicação de insumos à taxa variável em diferentes formas de relevo. Eng. Agr. 28(4):645 - 653. doi: 10.1590/S0100-69162008000400004.

Bautista F.; Cejudo, R.; Sánchez, A.; Aguilar, B.; Delgado, M.; Goguitchaichvili, A.; Marín, P.; Gil, J.; Díaz, E. 2013. Propiedades magnéticas y pedogénesis en un perfil de suelo con horizontes contrastantes. Latinmag Lett. 3:1 - 6.

Blundell, A.; Dearing, J.A.; Boyle, J.F.; Hannam, J.A. 2009. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth Sci. Rev. 95(3-4):158 - 188. doi: 10.1016/j.earscirev.2009.05.001.

Camargo, L.A.; Marques, J.; Pereira, G.T.; De Souza Bahia, A.S. 2014. Clay mineralogy and magnetic susceptibility of Oxisols in geomorphic surfaces. Sci. Agric. 71(3):244 – 256. doi: 10.1590/S0103-90162014000300010.

Cortez, L.A.; Marques, J.R.; Peluco, R.G.; Teixeira, D.B.; Siqueira, D.S. 2011. Suscetibilidade magnética para identificação de áreas de manejo específico em citricultura. Energia Agr. 26(3):60 - 79.

Dos Reis Barrios, M.; Marques, J.; Rocha, S.; Panosso, A.R.; Silva, D.; Scala, N. 2017. Magnetic susceptibility as indicator of soil quality in sugarcane fields. Revista Caatinga 30(2):287-295. doi: 10.1590/1983-21252017v30n203rc.

Fontes, M.P.F.; Oliveira, T.S.; Costa, L.M.; Campos, A.A.G. 2000. Magnetic separation and evaluation of magnetization of Brazilian soils from different parent materials. Geoderma. 96(1-2):81 - 99. doi: 10.1016/S0016-7061(00)00005-7.

Grimley, D.A.; Arruda, N.K.; Bramstedt, M.W. 2004. Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the midwestern USA. Catena 58(2):183 - 213. doi: 10.1016/j.catena.2004.03.001.

Gutiérrez C., M.A.; Zúñiga E., O.; Ospina-Salazar, D.I. 2016. Effect of three biowastes on the productivity potential of a sodic soil. Agron. colomb. 34(2):250 - 259 . doi.org/10.15446/agron.colomb.v34n2.55044

Huang, C.C.; Jia, Y.; Pang, J.; Zha, X.; Su, H. 2006. Holocene colluviation and its implications for tracing human-induced soil erosion and redeposition on the piedmont loess lands of the Qinling Mountains, northern China. Geoderma 136(3-4):838 - 851. doi: 10.1016/j.geoderma.2006.06.006.

IGAC - Instituto Geográfico Agustín Codazzi; CVC - CORPORACIÓN Autónoma Regional Del Valle Del Cauca. 2004. Levantamiento de suelos y zonificación de tierras del Departamento del Valle del Cauca. IGAC. Bogotá D.C. 775p.

Jordanova, D.; Jordanova, N.; Petrov, P. 2014. Pattern of cumulative soil erosion and redistribution pinpointed through magnetic signature of Chernozem soils. Catena. 120:46 - 56. doi: 10.1016/j.catena.2014.03.020.

Jordanova, D.; Jordanova, N.; Atanasova, A.; Tsacheva, T.; Petrov, P. 2011. Soil tillage erosion estimated by using magnetism of soils – a case study from Bulgaria. Environ Monit. Assess. 183:381 - 394. doi: 10.1007/s10661-011-1927-8.

Kanu, M.O.; Meludu, O.C.; Oniku, S.A. 2014. Comparative study of top soil magnetic susceptibility variation based on some human activities. Geofí. Int. 53(4):411 - 423. doi: 10.1016/S0016-7169(14)70075-3.

Luque, E.C.L. 2008. Propiedades magnéticas de los óxidos de hierro en suelos mediterráneos. En: https://dialnet.unirioja.es/servlet/tesis?codigo=54579, consulta: agosto, 2016.

Marqués, J.R.; Siqueira, D.S.; Camargo, L.A.; Teixeira, D.B.; Barrón, V.; Torrent, J. 2014. Magnetic susceptibility and diffuse reflectance spectroscopy to characterize the spatial variability of soil properties in a Brazilian Haplustalf. Geoderma. 219-220:63 - 71. doi: 10.1016/j.geoderma.2013.12.007.

Mathé, V.; Lévêque, F. 2003. High resolution magnetic survey for soil monitoring: detection of drainage and soil tillage effects. Earth Planet Sc. Lett. 212(1-2):241 - 251. doi: 10.1016/S0012-821X(03)00241-3.

Matias, S.S.R.; Marques, J.; Siqueira, D.S.; Pereira, G.T. 2014. Outlining precision boundaries among areas with different variability standards using magnetic susceptibility and geomorphic surfaces. Eng. Agríc. 34(4):695 - 706. doi: 10.1590/S0100-69162014000400009.

McBratney, A.B.; Minasny, B.; Cattle, S.R.; Vervoort, R.W. 2002. From pedotranfer functions to soil inference systems. Geoderma. 109(1-2):41 - 73. doi: 10.1016/S0016-7061(02)00139-8.

Nazarok, P.; Kruglov, O.; Menshov, O.; Kutsenko, M.; Sukhorada, A. 2014. Mapping soil erosion using magnetic susceptibility. A case study in Ukraine. Solid Earth Discuss. 6:831 - 848. doi: 10.5194/sed-6-831-2014.

Patil, N.G.; Singh, S.K. 2016. Pedotransfer functions for estimating soil hydraulic properties: a review. Pedosphere 26(4):417 - 430. doi: 10.1016/S1002-0160(15)60054-6.

Pedroso, I. 2013. Zonación de la contaminación por metales pesados en la cuenca del Almendares según mapeo de la susceptibilidad magnética. Miner. Geol. 29(3):1 - 17.

Rahimi, M.R.; Ayoubi, S.; Abdi, M.R. 2013. Magnetic susceptibility and Cs-137 inventory variability as influenced by land use change and slope positions in a hilly, semiarid region of west-central Iran. J. App. Geophy. 89:68 - 75. doi: 10.1016/j.jappgeo.2012.11.009.

Ramos, P.V.; Dalmolin, R.S.; Marques, J.; Siqueira, D.S.; Almeida, J.A.; Moura-Bueno, J.M. 2017. Magnetic susceptibility of soil to differentiate soil environments in southern Brazil. Rev. Bras. Cienc. Solo. 41:e0160189. doi: 10.1590/18069657rbcs20160189.

Royall, D. 2001. Use of mineral magnetic measurements to investigate soil erosion and sediment delivery in a small agricultural catchment in limestone terrain. Catena. 46(1):15 - 34. doi: 10.1016/S0341-8162(01)00155-2.

Siqueira, D.S.; Marques, J.; Matias, S.R.; Barrón, V.; Torrent, J.; Baffa, O.; Oliveira, L.C. 2010. Correlation of properties of Brazilian Haplustalfs with magnetic susceptibility measurements. Soil Use and Management. 26(4):425 - 431. doi: 10.1111/j.1475-2743.2010.00294.x.

Souza, I.G.; Costa, A.C.S.; Vilar, C.C.; Hoespers, A. 2010. Mineralogia e susceptibilidade magnética dos óxidos de ferro do horizonte B de solos do Estado do Paraná. Ciência Rural. 40(3):513 - 519.

Torrent, J.; Liu, Q.S.; Barrón, V. 2010. Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: origin and paleoenvironmental significance. Geoderma. 154(3-4):465 - 472. doi: 10.1016/j.geoderma.2008.06.020.

Torrent, J., Liu, Q.S., Bloemendal, J., Barro, N.V. 2007. Magnetic enhancement and iron oxides in the upper Luochuan loess – paleosol sequence, Chinese Loess Plateau. Soil Science Society of America Journal.71:1 - 9. doi:10.2136/sssaj2006.0328.

Urcia, O.; Larrasoaña, J.C.; Muñoz, A.; González, A.; Pérez, A.; Luzón, A.; Román, T.; Villalaín, J. 2012. La susceptibilidad magnética como marcador paleoambiental en un abanico aluvial del Pleistoceno superior: la cuenca de Añavieja, Cordillera Ibérica (NE de España). p. 742 - 745. En: VIII Congreso Geológico de España. Oviedo, España.

Williams, R.D.; Cooper, J.R. 1990. Locating soil boundaries using magnetic susceptibility. Soil Sc. 150:889 - 895.

Zúñiga, O.; Benavides, J.; Ospina-Salazar, D.I.; Jiménez, C.O.; Gutiérrez, M.A. 2016. Magnetic treatment of irrigation water and seeds in agriculture. R. Ing. Compet. 18(2):217 - 232.

Zúñiga Escobar, O.; Reyes Trujillo, A. Electro-thermal measurement device for e.g. evaluating compaction of agricultural soil has upper lid having orifice through which soil sample is introduced for evaluating soil's thermal conductivity. En: https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20061001&DB=&locale=en_EP&CC=ES&NR=2259498A1&KC=A1&ND=4, consulta: agosto, 2016.

Published

2017-12-20

How to Cite

Jiménez A., C., Benavides B., J., Ospina-Salazar, D. I., Zúñiga E., O., Ochoa B., O., & Mosquera G., C. (2017). Relationship between physical properties and the magnetic susceptibility in two soils of Valle del Cauca. Revista De Ciencias Agrícolas, 34(2), 33–45. https://doi.org/10.22267/rcia.173402.70