Evaluation of liming materials using incubation tests in an oxisol from the Colombian highlands

Authors

DOI:

https://doi.org/10.22267/rcia.183502.88

Keywords:

soil acidity, liming, chemical improvement, incubation tests

Abstract

Oxisols form one of the broader agricultural frontiers in the world; in South America, there are 243 million hectares, with 17 million in Colombia. Acidity resulting from aluminum, debasification and low availability of phosphorus are the most relevant indicators of chemical infertility in these soils. The objective of the present study was to evaluate the effect of liming materials on controlling acidity and chemical improvement of bases in an oxisol typical of the native savanna in the Colombian Altillanura. Using a completely randomized experiment design, 13 incubation treatments with three replications were defined. The chemical characterization of the problem soil, to which 1.5t.ha-1CaCO3 equivalent was incorporated using different commercial EQCaCO3 liming materials, was determined. At 40 days postincubation,
the chemical variables related to acidity (pH and concentrations of Al3+, Ca2+, Mg2+ and P) were evaluated. The encapsulating materials using simple amendments (calcined dolomites, ground dolomites, calcium and magnesium hydroxides, basic slag and live limes) had a significant effect on the control of acidity and increased the concentrations of Ca2 + and colloidal Mg2 +. A similar response was obtained when the treatments, such as the simple amendments, were mixed with phosphoric rock and organic matter (chicken manure) at a ratio of 75:10:15, respectively. The calcium and magnesium hydroxides and the basic steel slag, used as simple amendments or as part of complex amendments, offered superior effects on controlling acidity, with respect to the rest of the materials.

Downloads

Download data is not yet available.

References

Álvarez-Sánchez, M., Hernández-Acosta, E., Maldonado-Torres, R. & Rivera-González, M. (2013). Lime and mycorrhizae in the phosphorus deficiencies correction in an andisol cultivated with pinus halepensis mill. Madera y Bosques. 19(1): 7-16.

Amézquita, E., Rao, I., Rondón, M., Ayurza, M., Hoyos, P., Molina, D. & Corrales, I. (2013). Capítulo 13. Mejoramiento de oxisoles de baja fertilidad para sistemas agropastoriles de alta productividad en sabanas tropicales de Colombia. pp. 198-218. En: Amézquita, E., Rao, I., Rivera, M., Corrales, I., Bernal. (eds). Sistemas agropastoriles: Un enfoque integrado para el manejo sostenible de Oxisoles de los Llanos orientales de Colombia. 1a ed. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT); Ministerio de Agricultura y Desarrollo Rural (MADR) de Colombia; Corporación Colombiana de Investigación Agropecuaria (Corpoica). 288p.

Basak, B. & Biswas, D. (2015). Potentiality of indian rock phosphate as liming material in acid soil. Geoderma. 263: 104-109. doi: 10.1016/j.geoderma.2015.09.016

Bullon, J. & Bullon, C. (2014). Estudio comparativo de la mineralogía y los coloides arcillosos en suelos de trópicos húmedos. Apunt. Cienc. Soc. 4(2): 222-231. doi: 10.18259/acs.2014026

Carmeis, A., Penn, C., Crusciol, C. & Calonego, J. (2017). Lime and phosphogypsum impacts on soil organic matter pools in atropical oxisol under long-term no-till conditions. Agriculture, Ecosystems & Environment. 241(1): 11-23. doi: 10.1016/j.agee.2017.02.027

Castro, H. & Gómez, M. (2015). Suelos Sulfatados Ácidos. El caso del Valle Alto del río Chicamocha, Boyacá - Colombia. Libro producto de investigación Grupo Interinstitucional de Investigación en Suelos Sulfatados Ácidos Tropicales, Gissat- Uptc – Colciencias. ISBN 978-958-660-213-6. Editorial Uptc. 270p.

Castro, H., Gómez, M., Munevar, O. & Hernandez, D. (2006). Diagnóstico y control de la acidez en suelos sulfatados acidos en el distrito de riego del alto chicamocha (boyaca) mediante pruebas de incubacion. Agronomia Colombiana. 24(1): 122-130.
Castro, H. & Munevar, Ó. (2013). Mejoramiento químico de suelos ácidos mediante el uso combinado de materiales encalantes. U.D.C.A Actualidad & Divulgación Científica. 16(2): 409-416.

Castro, H. & Gómez, M. (2010). Capítulo 4. Fertilidad de suelos y fertilizantes. pp. 217- 298. En: Burbano, O. & Silva, M. (eds). Ciencia del suelo principios básicos. Primera edición. Bogotá DC: .Editorial Guadalupe S.A.

Da Costa, E., De Lima, W., Oliveira-Longatti, S. & De Souza, F. (2015). Phosphate-solubilising bacteria enhance Oryza sativa growth and nutrient accumulation in an oxisol fertilized with rock phosphate. Ecological Engineering. 83: 380-385. doi: 10.1016/j.ecoleng.2015.06.045

Epstein, E. & Bloom, A. (2005). Mineral nutrition of plants: principles and perspectives. Sunderland, Massachusetts: Sinauer Associates, Inc. Publishers. 380p.

Hagvall, K., Persson, P. & Karlsson, T. (2015). Speciation of aluminium in soil and stream waters: the importance of organic matter. Chemical Geology. 417: 32-43. doi: 10.1016/j.chemgeo.2015.09.012

Lora, R. (2010). Capítulo 2: Propiedades químicas del suelo. pp. 77- 134. En: Burbano, O. & Silva M F (eds). Ciencia del suelo principios básicos. Primera edición. Bogotá DC: Editorial Guadalupe S.A.

Marschner, H. (1995). Mineral nutrition of higher plants. Second edition. London: Academic Press. 889p. doi: 10.1006/anbo.1996.0155
Materechera, S.,Mkhabela, T. (2002). The effectiveness of lime, chicken manure and leaf litter ash in ameliorating acidity in a soil previouslyunder black wattle (Acacia mearnsii) plantation. Bioresourse Technology. 85 (1): 9-16. doi:10.1016/SO960-8524(02)00065-2

Massao, T., Moraes, J., Fávero, E. & Potma, D. (2016). Lime and gypsum application increases biological activity, carbon pools, and agronomic productivity in highly weathered soil. Agriculture. Ecosystems and Environment. 231: 156-165. doi: 10.1016/j.agee.2016.06.034

Masud, M., Jiu-Yu, L. & Ren-Kou, X. (2014). Use of alkaline slang and crop reside biochars to base saturation and reduce acidity of an acidotic ultisol. Pedosphere. 24 (6): 791-798.

Rivera, M., Amézquita, E., Bernal, J. & Rao, M. (2013). Capítulo 1. Las sabanas de los Llanos Orientales de Colombia: Caracterización biofísica e importancia para la producción agropecuaria. pp. 3-10. En: Amézquita, E., Rao, I., Rivera, M., Corrales, I. & Bernal. (eds). Sistemas agropastoriles: Un enfoque integrado para el manejo sostenible de Oxisoles de los Llanos orientales de Colombia. Primera edición. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT); Ministerio de Agricultura y Desarrollo Rural (MADR) de Colombia; Corporación Colombiana de Investigación Agropecuaria (Corpoica). 288p.

Sarma, B., Borkotoki, B., Narzari, R. & Kataki, N. (2017). Organic amendments: effect on carbon mineralization and crop productivity in acid soil. Journal of Cleaner Production. 152: 157-166. doi: 10.1016/j.jclepro.2017.03.124

Soil Survey Staff. (2014). Keys to soil taxonomy. Twelfth edition. Washington, D.C: United States Department of Agriculture, Natural Resources Conservation Service. 372p.

Souza, I., Archanjo, B., Hurtarte, L., Oliveros, M., Gouvea, C., Lidizio, L., Achate, C., Schaefer, C. & Silva, I. (2017). Al-/Fe-(hydr) oxides–organic carbon associations in oxisols - from ecosystems to submicron scales. Catena. 154: 63-72. doi: 10.1016/j.catena.2017.02.017

Trabelsi, D., Cherni, A., Zineb, A., Fitoiri, S. & Mhamdi, R. (2017). Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities. Applied soil Ecology. 114: 1-8. doi: 10.1016/j.apsoil.2016.11.014

Wang, L., Yang, X., Rachel, K., Wang, Y., Tong, D., Ye, M. & Jiang, X. (2013). Combined use of alkaline slag and rapeseed cake to ameliorate soil acidity in an acid tea garden soil. Pedosphere. 23 (2): 177-184.

Published

2018-12-19

How to Cite

Castro, H., & Guerrero, J. C. (2018). Evaluation of liming materials using incubation tests in an oxisol from the Colombian highlands. Revista De Ciencias Agrícolas, 35(2), 14–26. https://doi.org/10.22267/rcia.183502.88