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Resumen

Las estrellas de neutrones son objetos compactos remanentes en las explosiones de supernovas. Observa-
ciones astronómicas sugieren que el campo magnético superficial de estas estrellas decae en escalas largas
de tiempo, proceso que debe ser mediado por efectos disipativos tales como la difusión lineal Ohmica.
Aunque es bien sabido que las escalas de tiempo de la difusión Ohmica son mucho más largas que la edad
del Universo, procesos no lineales como la difusión ambipolar o el efecto Hall pueden generar estructuras
de pequeña escala que acortarı́an las escalas de tiempo [1]. En este artı́culo se ilustra el cálculo de los
modos de difusión Ohmica confinados en la corteza esférica de estrellas de neutrones bajo simetrı́a axial
(2D). La solución de las ecuaciones diferenciales parciales del modelo se basa en un método espectral
que expande las funciones angulares en polinomios de Legendre mientras que la parte radial y temporal
se resuelve por separación de variables.

Palabras Claves: Estrellas de Neutrones, Campos Magnéticos.

Abstract

Neutron stars are compact objects remaining of supernova explosions. Astronomical observations suggest
that surface star magnetic fields decay over long dissipative time scales. Although it is well known that the
diffusive time scales are much longer than the age of the universe, non linear processes such as ambipolar
diffusion or Hall effect can generate small-scale structures that shorten the time scales [1]. In this paper we
calculate the magnetic diffusion modes confined in spherical neutron star crusts with axial symmetry (2D).
The solution of the partial differential equations is based on a spectral method that expands the angular
functions in Legendre polynomials while the radial and temporal part are solved by separation of variables.
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1. Introduction

Astronomical observations of neutron stars show that the age of the star has a relation respect to the magnetic-field
strength. Young neutron stars have stronger magnetic fields than old stars. Also it is argued that the decay of ultra
strong magnetic field in magnetars are the main source of their Xray luminosity since these objects appear to radiate
substantially more power than that available from their rotational energy loss. As a consequence of the high electrical
conductivity in the neutron start crust, the time scales of diffusive processes are longer than the age of Universe,
however some non - linear processes such as the Hall effect can generate structures with small length scales which
shorten the time scales of these diffusive modes, thus, the magnetic field can decay in reasonable astronomical time
scales. In this paper we calculate the magnetic energy of different Ohmic (or diffusive) confined modes and show
that these energies decay in some characteristic time scales.

2. Methodology

2.1. Evolution Equation

The idea is to solve the equation for the evolution of the solenoidal magnetic field
−→
B (r, θ, t) in a spherical shell

(ri < r < ro) under the effect the linear Ohmic diffusion with the electrical conductivity σ0 and the electron number
density ne both spatially uniform functions:

∂B⃗

∂t
= ∇⃗2B⃗, (1)

where the time is normalized respect to τohm = 4πσoL
2

c2 with L a characteristic length of the system. Note that this
equation is consistent with the condition

−→
∇ ·

−→
B = 0, actually we used this condition in the derivation of the Ohmic

diffusion term in Eq.(1) by writing −
−→
∇ × (

−→
∇ ×

−→
B ) =

−→
∇2−→B . Thus, if we take the divergence of Eq.(1) we obtain

that ( ∂
∂t )(

−→
∇ ·

−→
B ) = 0, so, the magnetic field conserves its solenoidal property (

−→
∇ ·

−→
B ) = 0 along the evolution.

For this task we use a decomposition of field in toroidal and poloidal parts developed in [5] where the magnetic
field is written in terms of two unknown scalar functions g(r, θ, t) and h(r, θ, t) as:

−→
B =

−→
∇ × (g−̂→r ) +

−→
∇ ×

[−→
∇ × (h−̂→r )

]
, (2)

with −̂→r is the radial unit vector and g, h expanded in Legendre polynomials as:

g(r, θ, t) =

LB∑
l=1

gl(r, t)Pl(cos θ), (3)

h(r, θ, t) =

LB∑
l=1

hl(r, t)Pl(cos θ), (4)

with LB the truncation of the series. Taking the r component of Eq.(2) and the r component of the curl of
Eq.(2) after using Eq(1) and Eqs(3-4) we obtain the next equations for hl(r, t) and gl(r, t), with the radial operator
Ll =

∂2

∂r2 − l(l+1)
r2 :

∑
l

l(l + 1)

r2

[
∂
∂t − Ll

]
hl(r, t)Pl(cos θ) = 0, (5)

∑
l

l(l + 1)

r2

[
∂
∂t − Ll

]
gl(r, t)Pl(cos θ) = 0. (6)
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2.2. Linear Ohmic decay modes

The ohmic decay modes are given by g(r, θ, t) = gl(r, t)Pl(cos θ) and h(r, θ, t) = hl(r, t)Pl(cos θ), thus we
obtain the linear equations for the radial part of these modes for each (l) mode independently as:

[
∂
∂t −

∂2

∂r2 + l(l+1)
r2

]
hl(r, t) = 0 ;

[
∂
∂t −

∂2

∂r2 + l(l+1)
r2

]
gl(r, t) = 0. (7)

Also note that both equations have the same functional structure, so it is enough to focus in the first one for hl(r)
and the same conclusions are valid at the end for gl(r). Thus, we look for separable solutions hl(r, t) = Rl(r)Tl(t)
which is inserted in Eq.(7) to obtain:

Tl(t) = e−k2
l t = e

−t
τl ; r2

d2Rl

dr2
−
[
l(l + 1)− (klr)

2
]
Rl = 0, (8)

where k2l is a separation constant that fixes the decay timescales for each mode as τl = k−2
l . The different

kl need to be determined by the the boundary conditions on Rl or its derivatives. Starting from the Spherical
Bessel differential equation we obtain the solution of the Eq.(8) as a linear combination of the spherical Bessel
functions times a factor −r: Rl(r) = −r

[
Cljl(klr) +Dlyl(klr)

]
. Thus, the ohmic decay modes are: h(r, θ, t) =

−r
[
Cljl(klr) +Dlyl(klr)

]
Pl(cos θ)e

−t
τl and g(r, θ, t) = −r

[
Eljl(klr) + Flyl(klr)

]
Pl(cos θ)e

−t
τl . With Cl, Dl,

El, Fl constants that need to be fixed by the boundary conditions.

2.3. Zero-Boundary conditions

From Eq.(2) we can obtain the explicit form of the components of the magnetic field as:

Br =
1

r sin θ

[
−1

r
∂
∂θ

(
sin θ ∂h

∂θ

)]
; Bθ =

1

r

∂

∂r

(
∂h

∂θ

)
; Bϕ = −1

r

(
∂g

∂θ

)
. (9)

If we have a confined magnetic field we must require at the inner and outer surfaces Br(ri, θ, t) = Br(ro, θ, t) = 0.
From Eq.(9), this implies at these surfaces the conditions

(
∂h
∂θ

)
|ri,ro,θ,t= 0. Thus h needs to be a constant function

respect to θ at the inner and outer surfaces defined by ri and ro respectively.

Therefore a simple choice for the boundary conditions are the ”zero-boundary” conditions: h(ri, θ, t) =
h(ro, θ, t) = 0. The boundary conditions over g are less obvious from the physical point of view and they depend
essentially on the structure of Bϕ at the inner and outer surfaces. However and as starting simple point we can set
for g the same kind of ”zero-boundary” conditions. Therefore: g(ri, θ, t) = g(ro, θ, t) = 0. Normalizing respect to
the star radius, with ro = 1. The above boundary conditions lead to:

Cljl(klri) +Dlyl(klri) = 0; Cljl(klro) +Dlyl(klro) = 0 (10)
Eljl(klri) + Flyl(klri) = 0; Eljl(klro) + Flyl(klro) = 0. (11)

Combining Eqs(10-11) we obtain a trascendental equation for kl :

yl(kl)jl(klri)− yl(klri)jl(kl) = 0. (12)

For a given l we index the diferent solutions of Eq(12) by the index (n = 1, 2, 3, · · · ), like knl . For instance, for
a given l the number k1l represents the fundamental mode, i.e., that mode with the largest timescale τ11 = (k11)

−2

which ”survives” in the long-term evolution. Also, by combining these equations we obtain the ratios: Cn
l

Dn
l
=

En
l

Fn
l

=

−yl(k
n
l )

jl(kn
l
) . For ri = 0.75 we obtain numerically for l = 1, 2, 3, 4 the corresponding modes given by k11 = 12.6707,

k12 = 12.8768, k13 = 131798, k14 = 13.5732. The corresponding ratios are: C1
1

D1
1
=

E1
1

F 1
1
= −0.185172, C1

2

D1
2
=

E1
2

F 1
2
=

1.65544, C1
3

D1
3
=

E1
3

F 1
3
= −1.8269, C1

4

D1
4
=

E1
4

F 1
4
= −0.179258.
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3. Result

In the next figure we plot the evolution of the logarithm of the magnetic energies for two modes l. The logarithm
of the analytical solution for the energy of each Ohmic mode scales as −2t

τn
l

, for long times the energy of all modes
have decayed significantly. Note that for the ”zero-boundary conditions” we are using both toroidal and poloidal
energies of the Ohmic modes decay at the same timescale τnl .
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Fig. 1. Evolution of the Magnetic Energy of the modes (l = 1) and l = 2, for each case n = 1.

4. Conclusions

We solved a boundary value problem to study the evolution of the linear magnetic diffusion modes in the crust of a
neutron star. Our model was based in the equations of the macroscopic electrodynamics considering an electron fluid
in the crust flowing through a nuclei lattice. We used a decomposition of the field in poloidal and toroidal components
and we found the evolution of the energy for the corresponding magnetic modes confirming the exponential decay of
a characteristic diffusive processes. Although the timescales of these modes are in general much longer than the age
of the Universe these scales can be shorten by other non-linear processes such as Hall drift and Ambipolar Diffusion.
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