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ARTICLE  DATA ABSTRACT

In conventional agricultural production systems, soil management 
is generally carried out without considering the spatial variability of 
its properties. This situation generates not only soil degradation but 
also an increase in production costs associated with the management 
of this factor. The objective of this research was to evaluate, through 
geostatistical methods, the spatial variability of soil fertility in Botana 
Experimental Farm of Universidad de Nariño. Spatial variability maps 
were estimated using the ArcGIS 10 program, the Kriging interpolation 
method, and the optimal ranges of soil fertility for the Andean region 
as projection parameters for making decisions related to land use. The 
fertility zoning of the farm was established, classifying soil as having 
high, medium, and low fertility. Most of the experimental farm had low 
fertility soils (20.7ha), and only 3ha had good conditions. Statistical 
analysis indicated a high variability in soil chemical properties. 
Properties such as pH and bulk density showed low variability.

Keywords: spatial variability; soil physics; interpolation; soil analysis; 
precision agriculture.

En sistemas de producción agrícola convencional, generalmente el ma-
nejo de suelos se realiza sin considerar la variabilidad espacial de sus 
propiedades. Esta situación genera no solo degradación del mismo, 
sino también incremento en los costos de producción asociados al ma-
nejo de este factor. El objetivo de la presente investigación fue evaluar 
a través de métodos geo estadísticos la variabilidad espacial de la fer-
tilidad de suelos en un área de uso agropecuario (Granja experimental 
Botana, Universidad de Nariño). Se realizó la estimación de mapas de 
variabilidad espacial, empleando el programa ArcGIS 10 y el método de 
interpolación Kriging, teniendo en cuenta los rangos óptimos de ferti-
lidad de los suelos para la región andina como parámetros de proyec-
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ción en la toma de decisiones relacionadas al uso del suelo en el área estudiada. Se estableció la zonificación de 
la fertilidad de los suelos seleccionados de la granja, clasificándolos en: suelos de fertilidad alta, media y baja. 
La mayor parte de la finca experimental presentó suelos de baja fertilidad (20,7ha) y solo 3ha, buenas condi-
ciones al respecto. El análisis estadístico indicó una alta variabilidad en las propiedades químicas del suelo. Las 
propiedades como el pH y la densidad aparente mostraron una baja variabilidad.

Palabras clave: variabilidad espacial; física del suelo; interpolación; análisis de suelo; agricultura de precisión.

INTRODUCTION

In conventional agriculture, a large percentage 
of crop yield variability is due to the differentials 
that may exist in the soil properties (Bramley, 
2009). This variability can be analyzed from 
different perspectives, scales based on both 
the intervention objectives and the level of 
decision required. It also depends on natural 
disturbances and human actions, especially 
in agricultural practices (Fraterrigo & Rusak, 
2008).

Mapping, the use of cartographic tools, is a 
valuable approach to adapt work processes 
to landscape changes. Mapping is referred 
to as a tool because it is an important means 
to strengthen decision making, in this case, 
to improve agricultural production through 
nutrient use efficiency (NUE) (Murillo, 2006). 

The recognition of the role of fertilizers 
in increasing agricultural production, and 
consequently, in the production of food, fiber, 
and even energy, contrasts severely with the 
negative nature of the information that is 
currently being released on fertilizers use 
(Murillo, 2006).  

For agricultural sciences, information at 
different scales is often used to support 
decision making with respect to diagnosis, 
monitoring, and predictions related to 
the management of productive systems 
(Pachepsky & Hill, 2017). At the research 
level, the spatial variability of physical and 

chemical properties of soils at the field 
scale has been more widely considered 
than the patterns of such distribution (Reza 
et al., 2017). In this sense, the modeling of 
these properties will allow, among others, 
to estimate the distance in which different 
soil samples are independent as well as to 
improve the sampling process either for 
planning activities in a traditional way or 
under a precision agriculture scheme (Peralta 
& Costa, 2013; Peralta et al., 2015).

In terms of production and academic 
contributions, various activities are carried 
out in most production units. Regarding 
Botana Experimental Farm of Universidad de 
Nariño - Colombia, is a site where different 
activities take place, including growth, 
development, and productivity assessment of 
certain crops from the Andean region. In each 
of these, physical and chemical studies of the 
soils are generally conducted to determine 
their fertility level, which benefits the crop or 
system under study.

However, in most of the agricultural 
production units in the region, the results of 
soil analysis are not very useful over time. 
One of the reasons that account for this is 
the fact that the analyses are not properly 
stored or processed in databases, which 
hinders production planning in the long run. 
If properly used, these databases or mapping, 
which depict the spatial distribution of the 
physical and chemical properties of soils, 
would make it possible to estimate the 
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productive potential of the farm. This would 
result in appropriate agricultural, forestry, 
and livestock planning, without the need to 
repeat the already executed processes.

According to Álvarez et al. (2015), today, 
several research centers are using geographic 
information systems (GIS) to elaborate soil 
maps, which are of vital importance for 
planning and correct soil management. In 
turn, appropriate management increases 
the competitive capacity of soils and the 
possibilities to better channel agricultural and 
agroforestry programs and projects. Using 
GIS, soil fertility zonation studies facilitate 
adequate planning in terms of agricultural use 
of soil and its optimal management (Álvarez 
et al., 2015). Similarly, these tools allow 
making timely recommendations that would 
permit the optimization of resources and the 
definition of productive systems that become 
a very important input for farm management 
and thus take measures that promote the 
implementation of Precision Agriculture in 
these research centers.

Site-specific fertilization involves the 
assessment of the spatial relationships 
between soil properties and crop yield. In 
this sense, the spatial distribution of physical, 
chemical, and biological parameters of soil has 
been observed to affect crop yield (Machado 
et al., 2000). However, the spatial dependence 
of soil biological parameters has been little 
explored (Moreno, 2011). One of the most 
important uses of GIS is spatial analysis, 
especially the use of interpolations of 
different types of variables. In agriculture, the 
use of this tool makes it possible to analyze 
the variability of different characteristics 
in the landscape such as soil, diseases, and 
pests, among others (Clay et al., 2007). This 
undoubtedly helps to quantify the impact of 
this variation on production and the possible 

management guidelines required to optimize 
farm yields (Bertsch et al., 2002).

Considering the above, this research 
aimed to assess the implementation of soil 
fertility zoning at Botana Experimental 
Farm of Universidad de Nariño as a tool to 
contribute to productive processes, research, 
and academic practices of the agriculture 
programs of the University and productive 
systems of the region.

MATERIALS AND METHODS

Location. The present study was carried out 
at Botana Experimental Farm of Universidad 
de Nariño – Department of Nariño, at 2820 
m asl, 12.4°C and an average annual rainfall 
of 694mm. It is located in a low mountain 
dry forest life zone (bs-MB) at 1°09’30.8”N; 
77°16’31.8”W. 

Fieldwork and laboratory methodology. 
Through the use of a Geographic Information 
System, a sampling grid of 0.5 hectares was 
established, for a total of 106 soil samples in 
the productive areas of Botana Experimental 
Farm. That is, the samplings were drawn from 
an overall area of 55 hectares (productive 
area). This aspect guaranteed the significance 
of the study area about the established 
interpolation method and the areas dedicated 
to production within the system.

Once the sampling grid was defined, the 
sampling points were identified and 15 
soil subsamples were taken in each grid 
using an Edelman auger. These subsamples 
were mixed into a single sample, placed in 
plastic bags and labeled. The samples were 
sent to the laboratory of Universidad de 
Nariño to determine their physical-chemical 
characteristics (Table 1 and Table 2).
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Statistical and geostatistical analysis. 
The data were descriptively analyzed and a 
principal component analysis was performed 
using the SPAD software. The geostatistical 
analysis was carried out with ArcGIS 10 
software (ArcGIS, 2010). The semivariogram 
was obtained for each characteristic and 
through an iterative process where the 
active lag and the step were modified; the 
theoretical model of best fit was established, 
taking into account as parameters of decision 
the coefficient of determination (R2) and 
the sum of squares of the residuals (RSS). 
Subsequently, a cross-validation analysis was 
carried out, of importance in the estimation 

Table 1. Chemical parameters analyzed in the samples.

Essays Method Technique U. of measure

pH, potentiometer Soil: Water 
Ratio (1: 1) NTC 5264 Potentiometric

 

Walkley- Black
 (Colorimetric) - NTC 5403 Spectrophotometric uv-vis %

Organic mater Bray II y Kurtz NTC 5350 Spectrophotometric uv-vis mg/Kg
Available phosphorus CH3COONH4 1NpH7 NTC 5268 Volumetric

cmol+ / Kg
Cation Exchange Capacity (CEC)

CH3COONH4 1NpH7 NTC 5349 Atomic absorption 
spectrophotometryExchange calcium

Magnesium Exchange
Exchange Potassium Extracción KCl 1N NTC 5263  Volumetric
Shift Aluminum

DTPA - NTC 5526 Atomic absorption 
spectrophotometry mg/Kg

Available iron
Manganese available
Copper available
Zinc available Hot water NTC 5404 Spectrophotometry uv-vis
Boron available Based on organic matter Calculation %
Total Nitrogen Walkley- Black (Colorimetric) NTC5403 Spectrophotometry uv-vis %
Organic carbon (Ca (H2P04) 2.H20) 0,008M NTC 5402 Spectrophotometry uv-vis mg/Kg

Table 2. Physical parameters analyzed in the samples.

Essays Method Technique U. of measure
Texture     Touch     Textural grade
Bulk density     Graduated cylinder   Gravimetric    g/cc

of values in unsampled sites, through the 
point Kriging interpolation method, because 
the samples come from points and not from 
combinations or mixtures (Balzarini, 2014). 
This interpolation was the basis for the 
construction of thematic maps that allow 
visualizing the spatial variability of each 
of the physical and chemical properties 
analyzed. In the mentioned software, spatial 
distribution maps were also made for each 
variable, subsequently reclassifications of 
the results were performed to generate other 
fertility distribution maps for each variable in 
the three ranges, according to the values for 
the Andean region (Table 3).
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RESULTS AND DISCUSSION

General statistics. When analyzing the soil 
fertility traits of the total area samples, a high 

Table 3. Interpretation of results (ICA, fertilization in various crops, fifth approximation).

Bases 
cmol+/Kg Phosphorus 

and minor 
elements

mg/Kg pH

Low Medium  High Low Medium High Value Category

Ca < 3 03-jun > 6 P < 20 20 - 40 > 40 < 5.5 Extremely acidic

Mg < 1.5 1.5 – 2.5 > 2.5 Fe < 25 25 - 50 > 50 5.5 – 5.9 Moderately acidic

K < 0.2 0.2 – 0.4 > 0.40 Mn < 5 05 > 10 6.0 – 6.5 Suitable

Organic matter according to climate (%) Cu < 2 02 > 3 6.6 – 7.3 Neutral

Cold < 5 5 -10 > 10 Zn < 1.5 1.5 - 3 > 3 7.4 – 8.0 Alkaline

Half < 3 3-5 > 5 B < 0.2 0.2 - 0.4 > 0.4 > de 8 Very alkaline

Warm < 2 2-3 > 3 S < 10 -20 > 20   

percentage of variation was found, which 
suggested that there was a high intrazonal 
variability (Table 4).

Table 4. General statistics of the soil fertility variables at Botana Experimental Farm.

Variable Half Median D.E. Var (n) CV Mín Máx Asymmetry Kurtosis
pH 5.67 5.63 0.44 0.2 7.84 4.54 7.04 0.64 0.82
MO 5.23 4.59 2.16 4.6 41.24 1.88 14.7 1.42 2.83
P 62.04 21.85 98.41 9593.7 158.62 4.34 611.0 3.64 15.79
CIC 20.71 20.4 6.44 41.08 31.09 10.7 37.9 0.58 -0.24
Ca 7.51 6.83 2.6 6.67 34.55 0.05 15.3 0.89 1.43
Mg 3.3 3.07 1.22 1.47 36.93 1.38 8.7 1.54 3.53
K 0.9 0.68 0.85 0.71 94.13 0.0 5.37 2.25 7.33
Fe 273.92 264.0 68.31 4622.21 24.94 142.0 395.0 -0.06 -1.07
Mn 28.62 25.2 16.74 277.64 58.5 3.6 90.6 0.86 1.09
Cu 3.11 2.86 1.93 3.71 62.22 0.17 14.5 2.95 12.76
Zn 5.82 3.16 8.55 72.39 146.94 0.17 55.0 3.86 16.19
B 0.19 0.14 0.1 0.01 50.09 0.06 0.63 2.35 6.23
N 0.46 0.18 2.7 7.23 585.59 0.07 28.0 10.28 100.83
C 3.03 2.66 1.25 1.55 41.22 1.09 8.51 1.42 2.8
S 6.55 5.83 4.75 22.36 72.57 2.55 46.4 5.96 45.25
DAP 0.89 0.89 0.09 0.01 10.22 0.6 1.06 -0.61 0.43
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Taking into account some classifications for 
this type of results in similar studies, such 
as the one carried out by Vásquez (2009), 
we can classify the variability of the data as 
follows:

Relatively low or homogeneous variations 
are only presented for pH and bulk 
density (DBH), as shown in Table 5, 
whose similar results were obtained in a 
study of the variability of soil fertility of 
the experimental farm of the University 
of Magdalena (Vásquez, 2009). There is 
also agreement with the results found by 
Henríquez (2013), Londoño & Moreno 
(2014) and Ibarra et al. (2009).

The traits that presented extremely 
heterogeneous variability were P, K, Cu, Zn, N 
and S. These results also coincide with what 
was found by Londoño & Moreno (2014). 
Likewise, Gutiérrez et al. (2010), Moreno 
(2011) and Alesso et al. (2017) found in a 
soil fertility distribution study that available 
phosphorus and potassium showed high 
coefficients of variation. Moreno (2011) 
argues that although pH is a factor that 
influences the availability of phosphorus 
in the soil, he did not find a relationship 
between the high variability shown by this 
element and the low coefficients of variation 
observed in pH.

Table 5. Classification of the variability of the soil fertility parameters 
at Botana Experimental Farm.

Category of variables Variability coefficient (CV) Traits
Relatively homogeneous < 20 DAP, pH

Moderately heterogeneous 20-40 CIC, Ca, Mg, Fe.
Normally heterogeneous 40-60 MO, Mn, B, C.
Extremely heterogeneous >60 P, K, Cu, Zn, N, S.

Source: Vásquez (2009).

The high value of the coefficient of variation 
for P (158%) agrees with several works 
reported in the literature. In this sense, 
Molina et al. (2005) cite similar results. 
While the following: Ovalles (1991); Paz et 
al. (1996); Melchiori & Echeverría (2000), 
Ponce et al. (1999); Sadeghian et al. (2001); 
Jaramillo (2002) and Silva et al. (2003), say it 
may be due to residuality due to fertilization 
with P.; and that other factors influencing 
phosphorus retention by the soil, such as: a) 
Organic matter. In general, it has been found 
that the effect that the organic phase of the 
soil P-S diminishes the fixation of phosphorus. 
b) Presence of hydrated iron and aluminum 
oxides. In acid soils, these abound and form 
insoluble compounds with phosphorus. e) 
Amount and type of clay.

Geostatistical analysis of soil fertility. An 
exploratory data analysis was performed 
using the Infostat software, applying a basic 
statistic to identify the mean, variance, 
standard deviation, kurtosis and skewness 
of the data. The SPAD software was applied 
for multivariate analysis to determine the 
explanatory traits of the main soil components. 
In the ArcGIS 10 program, the geostatistical 
analysis was performed (ArcGIS, 2010). For 
each trait, the semivariogram was obtained, 
and through an iterative process in which 
the active lag and the step were modified.
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 A theoretical model of best fit was 
established, taking into account as decision 
parameters the coefficient of determination 
(R2) and the sum of squares of the residuals 
(RSS), for which the first must be the closest 
to 100% and the second the smallest within 
the situations raised. The parameters of 
the best-fit theoretical semivariograms 
obtained for each of the properties studied 
are recorded in Table 6.

The models of the selected semivariograms 
correspond to those with the greatest spatial 
adjustment that explain the distribution of 
the evaluated variables. Table 6 shows that 
the semivariograms with the spherical model 
are the best fits for CIC, Fe, Zn, B, N and C. For 

Table 6. Parameters of the semivariograms for the fertility variables using the Kriging model.

Variable Model
Nugget 
effect 

Co

Sill 
Co+C

%C0/ Effective 
Range 

(m)

Root-Mean-
Square

Root-Mean-
Square 

Standardized

Average 
Standard 

Error
Dependence

(C0+C)

pH Spherical 0.02 0.21 9.5 325 0.26 0.97 0.27 Strong
MO Gaussian 0.03 0.04 75 91.3 1.36 0.89 1.48 Moderate
P Gaussian 0.3 0.67 44.8 305.3 40.7 1.39 51.9 Moderate
CIC Spherical 0.02 0.013 153.8 263.2 3.85 1.01 4.05 Weak
Ca Gaussian 0.01 0.25 4 74.2 2.47 1.77 3.95 Strong
Mg Exponential 0.018 0.05 36 82 0.93 0.9 0.96 Moderate
K Gaussian 0.15 0.76 19.7 97.6 0.55 1 1.14 Strong
Fe Spherical 0.007 0.06 11.7 373 39.6 0.92 44.9 Strong
Cu Gaussian 0.09 0.16 56.3 342 1.47 1.17 1.21 Moderate
Zn Spherical 0.65 0.47 138.3 355 2.9 0.95 4.44 Weak
B Spherical 0.03 0.06 50 376 0.05 1.17 0.04 Moderate
N Spherical 0.01 0.03 33.3 78.5 0.04 1.02 0.04 Moderate
C Spherical 0.01 0.04 25 78 0.74 0.96 0.78 Strong
S Gaussian 0.07 0.05 140 208 2.1 0.97 2.17 Weak

Textura Exponential 0.09 0.05 180 71.5 1.27 0.87 1.48 Moderate

Nugget: variance of spatial discontinuity due to measurement error or micro variability. Sill: maximum threshold of the 
semi-variance. Range Ao: range of spatial dependence where the sill is reached.

MO, P, Ca, K and S, it was the Gaussian, and 
for Mg and texture, the Exponential model 
corresponded.

The range indicates the distance from which 
the samples are spatially independent of each 
other, and represents the size of grain or stain 
that the variable represents; in this sense, 
the traits with the greatest scope of spatial 
dependence were pH, P, Zn and B. On the 
other hand, the traits with the minor spatial 
dependence were Ca, Mg, N, C and texture. It 
is also observed in Table 6 that in all cases, 
the effective range exceeded the minimum 
sampling distance used in this study, which 
was 50m, suggesting an adequate sampling 
distance (Van et al., 2000).
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The spatial dependence was analyzed through 
the relative Nugget effect [%C0 / (C0 + C)], 
cited by Trujillo (2011). That revealed a strong 
dependence for pH, Ca, K, Fe and C (<25%), 
while MO, P, Mg, Cu, B, N and texture have a 
moderate dependence (25-75%) and weak 
spatial dependence (> 75%) for CIC, Zn and S.

Spatial distribution maps. According to 
Balzarini (2014), Kriging interpolations allow 
the generation of spatial distribution maps for 
each of the physical and chemical traits studied. 
As an example, the spatial distribution maps 
for soil organic matter (SOM) and Mg are 
indicated below in Figure 1.

Considering the samplings carried out and 
the interpolation of the evaluated variables, 
Figures 2 and Figure 3 show the values 
reclassified according to the fertility ranges 
for the Andean zone mentioned in Table 3 
of this document. First, Figure 2 indicates 
the spatial distribution for Boron B, Calcium 
Ca, Carbon C, Cation Exchange Capacity CIC, 
Copper Cu, Potassium K and Magnesium Mg, 
while Figure 3 shows the corresponding 

values for Manganese Mn, Organic Matter 
SOM, Nitrogen N, Phosphorus P, Zinc Zn, pH 
and Texture. In this way, maps with high, 
medium and low ranges were generated for 
the said traits. From the data observed in 
the maps, it is inferred that variables such as 
Mg, Mn, Ca and K occupy most of the surface 
of Botana Experimental Farm in a high 
range, both distributed in the upper, middle 
and lower part of the farm. The Cu and P 
presented a certain range, especially towards 
the middle and lower zones. The variables B, 
C, N and MO, did not present high ranges, only 
medium and low. 

According to the texture data obtained 
(Figure 3), the vast majority of the soils of 
Botana Experimental Farm (12ha) have a 
sandy clay loam to clay loam texture, and only 
5ha are of a sandy loam to loamy texture. The 
thematic map for pH (Figure 3) shows areas 
ranging from red (neutral) to green (very 
strongly acidic). In general, most of the farm 
has moderately acidic soils (16has).
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Figure 1. Interpolation of the spatial distribution according to the Kriging method for SOM (a) and Mg (b). 

 

Considering the samplings carried out and the interpolation of the evaluated variables, 
Figures 2 and Figure 3 show the values reclassified according to the fertility ranges for the 
Andean zone mentioned in Table 3 of this document. First, Figure 2 indicates the spatial 
distribution for Boron B, Calcium Ca, Carbon C, Cation Exchange Capacity CIC, Copper Cu, 
Potassium K and Magnesium Mg, while Figure 3 shows the corresponding values for 
Manganese Mn, Organic Matter SOM, Nitrogen N, Phosphorus P, Zinc Zn, pH and Texture. 
In this way, maps with high, medium and low ranges were generated for the said traits. 

Figure 1. Interpolation of the spatial distribution according to the Kriging method for 
SOM (a) and Mg (b).
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Figure 2. Classification of spatial distribution of B (a), Ca (b), C (c), CIC (d), Cu (e), K (f) and Mg. The colors 
red, blue and yellow represent high, medium and low contents, respectively. 

Figure 2. Classification of spatial distribution of B (a), Ca (b), C (c), CIC (d), Cu (e), K (f) and Mg. The 
colors red, blue and yellow represent high, medium and low contents, respectively.
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Classification analysis. To define relatively 
homogeneous zones based on the principal 
components, the first three components were 
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Figure 3. Classification and spatial distribution of Mn (a), SOM (b), N (c), P (d), and Zn (e). Where the red, 
blue, and yellow colors represent high, medium and low content of the evaluated variables, respectively; 

For pH (f), where red for pH represents values greater than 6.5 and green less than 5.0; For Texture (g), red 
represents sandy loam to loam soils, dark green loam to clay loam, orange clay loam, and light green sandy 

clay loam. 

 

Classification analysis. To define relatively homogeneous zones based on the principal 
components, the first three components were selected, explaining 80% of the variability of 
the data. This analysis allowed obtaining three clusters (Figure 4). 

Figure 3. Classification and spatial distribution of Mn (a), SOM (b), N (c), P (d), and Zn (e). 
Where the red, blue, and yellow colors represent high, medium and low content of the evaluated 
variables, respectively; For pH (f), where red for pH represents values   greater than 6.5 and 
green less than 5.0; For Texture (g), red represents sandy loam to loam soils, dark green loam 
to clay loam, orange clay loam, and light green sandy clay loam.

selected, explaining 80% of the variability 
of the data. This analysis allowed obtaining 
three clusters (Figure 4).
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Cluster 1. Making an interpolation of the 
sampled points that correspond to this 
group, an area of 20.7has was obtained, 
located towards the western side of Botana 
Experimental Farm, which corresponds to 
the lots: 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 
17, 18, 20, 21, 22, 32, 24, 35, 26 and 27. The 
traits of these batches are: high content of 
Mg, K, Zn, Mn and Ca; low C and SOM content; 
medium to low P and Cu content; medium 
CEC; moderately acidic pH, and sandy clay 
loam to loam texture.

Cluster 2. This group corresponds to 
an area of   13.9has, located towards 
the eastern part of the farm, which 
corresponds to lots: 28, 29, 30, and 31, part 
of 32, 7 and 11. The traits of this cluster are 
strongly acidic pH; medium SOM content; 
low content of P, B, Cu; high content of K, 
C, Ca, Mg, Mn; high CIC; texture Sandy Clay 
Loam to Sandy Loam.

Cluster 3. This group corresponds to an 
area of   three hectares, located towards the 
southeastern part of Botana Experimental 
Farm. The traits of this zone are neutral pH; 
medium content of B; high content of Zn, K, 
P, Ca, Cu, Mg, Mn; high CEC; low C content; 
texture Sandy Clay Loam to Clay Loam.

According to the previous characteristics, we 
can assure them that the third cluster presents 
the best conditions; therefore, it corresponds 
to an area of high fertility. It should be noted 
that the administrative infrastructure of 
the farm is located in this area; however, 
there are many agricultural vocations with 
good fertility traits. The second Cluster 
presents quite favorable conditions for the 
development of cold-climate crops; therefore, 
it corresponds to a zone of medium fertility. 
The first Cluster presents quite limiting traits 
since it presents the lowest content in some 
elements, such as SOM, Cu, C and P, with a 
loamy-to-loamy sandy clay texture (Figure 5).
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CONCLUSIONS

In general, the properties evaluated, except 
for pH and bulk density, showed significant 
variability and spatial distribution throughout 
the study area. Mg, Mn, Ca and K occupy most 
of the surface, while organic matter and 
phosphorus content are the most limiting 
properties. In this case, the distribution 
maps made it possible to identify spatial 
trends that, independently of signifying a 
specific fertility level, could be projected as 
references for differential nutrition actions in 
farm management.

Based on the restriction levels for the 
evaluated traits and possibly due to the soil 
mineralogy dominated by non-crystalline 
aluminosilicates, the low cation exchange 
capacity and soil management factors, three 
fertility zones could be identified on the farm: 
high, medium and low, the latter being the 
most predominant.
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