Savanna sandy loam soil physical conditions impacts upon infiltration

  • Américo J. Hossne G. Universidad de Oriente
  • Pedro Antonio Vásquez Universidad de Oriente
  • Escáriela Josefina Smith Universidad de Oriente
  • Luis Mercedes Leiva Universidad de Oriente
Keywords: Kostiakov equation theory, infiltration, response surface, Proctor test

Abstract

This work focused on studying Kostiakov infiltration affected by wetness, depth, compaction and density. Physical properties perturbations effects on infiltration-Kostiakov interrelations. The objectives consisted finding the effects of compaction, depth, density and wetness upon infiltration, the influence of the relationship between density and wetness and the soil physical effects upon Kostiakov. Nine  cylinders of 15.24 cm diameter and 20 cm height, with 2.50 soil-kg/cylinder, analyzed with a randomized block design with three replications and three factors: wetness (3, 6, 9, 12, 15%), depth (0-15, 15-30, 45-60 cm), and three compaction levels (0, 13, 26 blows). For optimal of 8.45% wetting, 27.66 cm depth, 1.56 and 0.52 g/cm3, 0 and 13-26 compaction blow; the infiltrations were 18.77, 16.32, (0.01 and 56.8), and (24.38 and 0 tendency)  accordingly. Conclusion: infiltration, compaction and bulk density relations were inversely. Compaction most influenced infiltration, following depth and wetness up to 9%.

Downloads

Download data is not yet available.

References

Adindu, R.U.; Akoma, C.H.; Igbokwe, K.K. (2014). Estimation of Kostiakov’s infiltration model parameters of some sandy loam soils of Ikwuano – Umuahia, Nigeria. Open Transactions on Geosciences. 1(1): 34-38.

Ahuja, L.R.; Kozak, J.A.; Andales, A.A.; MA, L. (2007). Scaling parameters of the Lewis-Kostiakov water infiltration equation across soil textural classes and extension to rain infiltration. American Society of Agricultural and Biological Engineers. 50(5): 1525-1541.

Ampofo, E.A. (2010). Soil moisture dynamics in coastal savanna soils in the tropics under different soil management practices. Hydrological Sciences Journal. 51(6): 1194-1202.

Bharati, L.; Lee, K.H.; Isenhart, T.M.; Schultz R.C. (2002). Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agroforestry Systems. 56: 249-257.

Duru, J.O.; Hjelmfelt, A.I.; Okereke, N.A.A. (2005). Developments in infiltration theory and applications in hydrologic modeling. Yenagoa. 27: 146-155.

Fernández, C.; Vega, J.A.; Jiménez, E.; Vieira, D.C.S.; Merino, A.; Ferreiro, A.; Fonturbel, T. (2012). Seeding and mulching + seeding effects on post-fire runoff, soil erosion and species diversity in Galicia (NW Spain). Land Degradation Development Journal. 23(2): 150-156. doi: https://doi.org/10.1002/ldr.1064

Fisher, R.A. (1922). The goodness of fit of regression formulae, and the distribution of regression coefficients. Journal of the Royal Statistical Society. 85(4): 597-612. doi:10.2307/2341124.

Forero, J.A. (2000). Parámetros Hidrodinámicos para Riego. Colombia: Universidad Nacional de Colombia. 31p.

Fouli, Yme`ne; Barbara, J.; Cade-Menun; Herb W.C. (2013). Freeze thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils. Canadian Journal of Soil Science. 93: 485 - 496. doi:10.4141/CJSS2012-060

Gregory, J.H.; Dukes, M.D.; Jones, P.H.; Miller, G.L. 2006. Effect of urban soil compaction on infiltration rate. Journal of Soil and Water Conservation. 61(3), 117-124.

Haghnazari, F.; Shahgholi, H.; Feizi, M. (2015). Factors affecting the infiltration of agricultural soils: review. International Journal of Agronomy and Agricultural Research (IJAAR). 6(5): 21-35.

Hinman, W.C.; Bisal, F. (1973). Percolation rate as affected by the interaction of freezing and drying processes of soils. Soil Science. 115: 102-106.

Holzapfel, E.A.; Matta, C.R. (2005). Infiltración de agua en el suelo. Chile: Universidad de Concepción. 30p.

Hoorman, J.J.; Moraes Sá J.C.; Reeder, R. (2011). The biology of soil compaction. Recovered from https://agronomypro.com/biology-soil-compaction.pdf

Hossne, A.J.; Mayorga, Y.N.; Zasillo, A.M.; Salazar, L.D; Subero, F.A. (2012). Savanna oil water content effect on its shear strength-compaction relationship. Revista Científica UDO Agrícola. 12 (2): 324-337.

Hossne, A.J.; Mayorga, Y.N.; Zasillo, A.M.; Salazar, L.D.; Subero, F.A. (2009). Humedad compactante y sus implicaciones agrícolas en dos suelos franco arenosos de sabana del estado Monagas, Venezuela. Revista Científica UDO Agrícola. 9(4): 937-950.

Hossne A.J.G. (2008). La densidad aparente y sus implicaciones agrícolas en el proceso expansión/contracción del suelo. Terra Latinoamericana. 26: 195-202.

Huntley, B.J.; Walker, B.H. (1982). Ecology of Tropical Savannas. Berlin Heidelberg, New York and Tokyo: Springer-Verlag Berlín Heidelberg. 669p. doi: 10.1007 / 978-3-642-68786-0

Kostiakov, A.N. (1932). On the dynamics of the coefficient of water-percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. Society of Soil Science. 14: 17-21

Laio, F. (2006). A Vertically extended stochastic model of soil moisture in the root zone. Water Resource Research Journal. 42(2): W04206. doi: 10.1029/2005WR004502.

Lee, J.W.; Park, C.M.; Rhee, H. (2013). Revegetation of decomposed granite roadcuts in Korea: developing digger, evaluating cost effectiveness, and determining dimensions of drilling holes, revegetation species, and mulching treatment, Land Degradation. Development Journal. 24: 591-604. doi:10.1002/ldr.2248.

Leiva, G.L.M. (2011). Relación entre la infiltración y la compactación en el horizonte de 150 a 300 mm de un suelo de sabana, Jusepin del estado Monagas. Venezuela: Universidad de Oriente.

Maduakor, H.O. (1991). Physical and hydraulic properties of soils of the Sudano-Sahelian regions of Nigeria zone. Recovered from https://pdfs.semanticscholar.org/40e1/3808dc245c64838e4e1a3998a0e7f9f34a23.pdf

Magnus, U.I.; Adindu, R.U. (2014). Use of Kostiakov’s infiltration model on Michael Okpara University of Agriculture, Umudike Soils, Southeastern, Nigeria. Journal of Water Resource and Protection. 6(10): 888-894. doi: http://dx.doi.org/10.4236/jwarp.2014.610083.

Mazloom, H.; Foladmand, H. (2013). Evaluation and determination of the coefficients of infiltration models in Marvdasht region, Fars province. International journal of Advanced Biological and Biomedical Research. 1(8): 822-829.

Montgomery, D.C.; Peck, E.A.; Vining, G.G. (2001). Introduction to linear regression analysis. 3rd Edition. New York: John Wiley & Sons.

Paredes, E.B.; Carvajal, R.P. (1999). Efecto del esfuerzo cortante y su interrelación con la humedad y la densidad seca en un suelo ultisol franco arenoso. Venezuela: Universidad de Oriente.

Pitt, R.; Lantrip, J.; Harrison, R.; Charles, L.; Xue, D. (1999). Infiltration through disturbed urban soils and compost-amended soil effects on runoff quality and quantity. Washington: National Risk Management Research Laboratory.

Pitt, R.; Chen, Shen-En; Clark, Sh. (2002). Compacted urban soils effects on infiltration and bioretention stormwater control designs. Recovered from https://ascelibrary.org/doi/pdf/10.1061/40644%282002%2914

Prats, S.A.; Malvar, M.C.; Vieira, D.C.S.; MacDonald, L.; Keizer, J.J. (2013). Effectiveness of hydromulching to reduce runoff and erosion in a recently burnt pine plantation in Central Portugal. Land Degradation Development Journal. doi:10.1002/ldr.2236.

Poulovassilis, A.; Elmaloglou, S.; Kerkides, P.; Argyrokastritis, I. (1989). A variable sorptivity infiltration equation. Water Resources Management. 3(4): 287-298.

Roy, G.B.; Gosh, R.K. (1982). Infiltration rate at long times. Soil Science. 134: 345-347.

Rucks, L.; García, F.; Kaplán, A.; Ponce de León, J.; Hill, M. (2004). Propiedades Físicas del Suelo. Montevideo, Uruguay: Universidad De La República. 68p.

Smith N.I.J. (2011). Relación entre infiltración y compactación en el horizonte de 0 a 150 mm de un suelo de sabana del estado Monagas. Monagas, Venezuela: Universidad de Oriente.

Tofallis, C. (2009). "Least Squares Percentage Regression". Journal of Modern Applied Statistical Methods. 7: 526-534. doi:10.2139/ssrn.1406472

Vásquez L.P.A. (2011). Relación entre la infiltración y la compactación en el horizonte de 450 a 600 mm de un suelo de sabana, Jusepín del estado Monagas. Monagas, Venezuela: Universidad de Oriente.

Veldhuis, M.P.; Howison, R.A.; Fokkema, R.W.; Tielens E.; Olff, H. (2014). A novel mechanism for grazing lawn formation: large herbivore-induced modification of the plant–soil water balance. Journal of Ecology. 102: 1506-1517.

Weber, J.F.; Apestegu, L. (2016). Parámetros de los modelos de Kostiakov y Lewis-Kostiakov para áreas permeables del ejido urbano de la ciudad de Córdoba. Recovered from https://www.researchgate.net/publication/266475613

Zhang, R.; Cheng, Z.; Zhang, J.; Ji, X. (2012). Sandy loam soil wetting patterns of drip irrigation: a comparison of point and line sources. Procedia Engineering. 28: 506 - 511.
.
Published
2020-06-28
How to Cite
Hossne G., A., Vásquez, P., Smith, E., & Leiva, L. (2020). Savanna sandy loam soil physical conditions impacts upon infiltration. Revista De Ciencias Agrícolas, 37(1). Retrieved from https://revistas.udenar.edu.co/index.php/rfacia/article/view/5725