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Abstract

In this paper we investigate bright multisoliton solutions of the one-dimensional Gross-Pitaevskii equation
with a parabolic potential, a time-dependent nonlinearity, and a term related to gain or loss. Analytical
N -soliton solutions are obtained by using the relation between the Gross-Pitaevskii equation with time
dependent coefficients and the standard nonlinear Schrödinger equation. In particular, we study interac-
tions between snake solitons.
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Resumen

En este trabajo se estudian multisolitones brillantes de la ecuación de Gross-Pitaevskii con un potencial
parabólico, una no linealidad dependiente del tiempo y un término relacionado con ganancias o pérdidas
en un condensado. Se obtienen soluciones analı́ticas con N solitones utilizando la relación existente
entre la ecuación de Gross-Pitaevskii con coeficientes dependientes del tiempo y la ecuación no lineal de
Schrödinger. Se hace un estudio particular de los solitones serpiente y sus interacciones.

Palabras Claves: Ecuación de Gross-Pitaevskii, solitones no autónomos.

1. Introduction

Soliton theory describes a class of nonlinear wave propagation phenomena appearing as a result of the balance
between nonlinearity and dispersion or diffraction in a system [1]. Solitons have stimulated research in different
branches of physics, mathematics and computation science [1, 2, 3]. The ending ”on” is generally used to describe
elementary particles, and this word was introduced to emphasize the most remarkable feature of these solitary waves.
This means that the energy can propagate in the localized form and that the solitary waves emerge from the interaction
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completely preserved in form and speed with only a phase shift [4].

The classical soliton concept was developed for nonlinear and dispersive systems that have been autonomous; namely,
time has only played the role of the independent variable and has not appeared in the coefficients or explicitly in
the nonlinear equation that describes the dynamics of the system. However, in experiments and in real situations, it
is common that the system is modeled by time-dependent external forces, terms related to losses, and propagation
in non-uniform media. In this context are studied nonautonomous solitons, the dynamics of these localized pulses is
described by nonlinear differential equations with time-dependent coefficients [4, 5, 6, 7].

Recently much effort has been given to the study of solitons in Bose-Einstein condensates with time dependent
control parameters. This phenomenon is modeled by the Gross-Pitaevskii (GP) equation with coefficients that evolve
with the time. In the reference [7] is presented a detailed study of its nonautonomous soliton solutions for cases in
which the coefficients are related by means of a Riccati type equation. In this work is studied an extension of these
results in order to analyze multisoliton solutions.
This paper is organized as follows: in the section 2 we present the mathematical model used in [7] to establish a
relation between the Gross-Pitaevskii equation with time-dependent coefficients and the nonlinear Schrödinger (NLS)
equation. In section 3 we use an algebraic system of equations that allows to find bright multisoliton solutions of the
NLS equation. In section 4 bright multisoliton solutions of the 1D Gross-Pitaevskii equation with time-dependent
parameters are investigated. In particular, the cases of two and three snake solitons are discussed. Finally, we present
the conclusion and complementary material.

2. Mathematical Model: The 1D Gross-Pitaevskii equation with time-dependent coefficients

The main interest of this paper is to study the interaction of nonautonomous soliton solutions of the equation:

i
∂Φ(x, t)

∂t
= −1

2

∂2Φ(x, t)

∂x2
−R(t)|Φ(x, t)|2Φ(x, t) +

Ω2(t)

2
x2Φ(x, t) + i

γ(t)

2
Φ(x, t). (1)

Equation (1) is obtained from the Gross-Pitaievskii equation and describes the dynamics of a Bose-Einstein condensate
in a parabolic potential with a frequency Ω(t), time-dependent nonlinearity R(t), and a term γ(t) related to gain or
loss of atoms in the condensate [7].

A first transformation of (1) combines the term ∂Φ(x,t)
∂t with the part modeled by γ(t), using [5, 7]:

Φ(x, t) = exp

[
1

2

∫
γ(t)dt

]
Q(x, t), (2)

the equation (1) requires:

i
∂Q(x, t)

∂t
= −1

2

∂2Q(x, t)

∂x2
− R̃(t)|Q(x, t)|2Q(x, t) +

Ω2(t)

2
x2Q(x, t), (3)

where the function R̃(t) is given by R̃(t) = exp
[∫
γ(t)dt

]
R(t).

The expression (3) is a particular form in a family of integrable nonautonomous NLS equations [4, 5]. In terms of
the transformation [4, 5, 7]:

Q(x, t) = r(x, t)eiθ(x,t)q(X,T ), (4)

the equation (3) is mapped to the standard one-dimensional nonlinear Schrödinger equation:

i
∂q(X,T )

∂T
+

1

2

∂2q(X,T )

∂X2
+ |q(X,T )|2q(X,T ) = 0, (5)

where the functions r(t), θ(x, t), X(x, t), T (t) are defined by the relations [7]:
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r2(t) = 2r2
0R̃(t), (6)

θ(x, t) = − R̃t
2R̃

x2 + 2br2
0R̃x− 2b2r4

0

∫
R̃2(t)dt, (7)

X(x, t) = 2r0R̃x− 4br3
0

∫
R̃2(t)dt, (8)

T (t) = 2r2
0

∫
R̃2(t)dt. (9)

Here b, r0 are constants and R̃(t), Ω(t) satisfy the condition:

d

dt

(
R̃t

R̃

)
−

(
R̃t

R̃

)2

− Ω2(t) = 0. (10)

where R̃t = dR̃(t)
dt . Hence, transformations (2) and (4) map the GP equation (1) to the NLS equation (5) only if R̃(t)

and Ω(t) are related by the condition (10) which is a Riccati type equation for R̃t
R̃

.

Reference [7] presents a detailed study of different analytical solutions of the equation (10) and discusses the
characteristics of one soliton solutions of the equation (1). In the appendix in the section 6, we present the different
types of solutions of physical interest studied in [7]. In the following part we are interested in interactions between
nonautonomous solitons; therefore, we study in detail the particular case without dissipation, i.e., γ = 0, and a
constant frequency Ω = Ω0. For this election, the Riccati equation determines a nonlinearity described by a function
R(t) that satisfies R̃(t) = sech(Ω0t). Soliton solutions of (1) with these coefficients are denominated snake solitons
[7]. In the following part we study the interaction of multiple snake solitons derived from multisoliton solutions of
the NLS equation. The methodology used in this work is general and could be implemented to study other solutions
of (10) that include dissipation and diverse types of nonlinearities (see Table 1).

3. Brigth multisoliton solutions of the nonlinear Schrödinger equation

In order to investigate soliton interactions of the GP equation (1), in this section we study the one-dimensional
nonlinear Schrödinger equation:

i
∂q(x, t)

∂t
+

1

2

∂2q(x, t)

∂x2
+ |q(x, t)|2q(x, t) = 0. (11)

The NLS equation is studied in different contexts in physics and mathematics [1, 8, 9]. This equation is integrable,
with soliton solutions product of the compensation between the nonlinearity an the dispersive terms [1]. Solutions
with multiple solitons are studied in detail in references [10, 11] by means of the Lax pair formulation and Zakharov-
Shabat schemes [1, 9].

N -soliton solutions of equation (11) can be expressed as:

q(x, t) =

N∑
k=1

Lk(x, t), (12)

where the functions Lk(x, t) are defined by the algebraic system of equations [10, 11]:

Lk(x, t) +

N∑
m=1

N∑
n=1

ηkmnLm(x, t)eβk+β∗
n = (q0)

k
eβk for k = 1, 2, . . . , N, (13)

with the coefficients:

ηkmn =
(q0)

k
(q0)∗

n

[(κm + κn) + i(λm − λn)][(κk + κn) + i(λk − λn)]
, (14)

βk = i

(
κ2
k − λ2

k

2
t− λkx

)
− κk [x+ λkt] . (15)
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Fig. 1. Density plot of |q(x, t)| as a function of x and t for two-soliton solutions of the NLS equation (11). (a) Frontal collision of solitons with
parameters: κ1 = κ2 = (q0)1 = (q0)2 = 1.8 and λ1 = −λ2 = −4. (b) Two solitons with parameters: κ1 = κ2 = 1, (q0)1 = (q0)2 = 2 ,
λ1 = −1, and λ2 = −2. (c) Two solitons with parameters: κ1 = 1.2, (q0)1 = 2.25, λ1 = −1 for one soliton and κ2 = 0.8, (q0)2 = 1.5,
λ2 = 0.8 for the other one.

In equations (13)-(15), the set of arbitrary real constants κk, λk, and complex constants (q0)
k

with k = 1, 2, .., N ,
define characteristics of each soliton.

In the case N = 1, it is obtained the soliton solution of the equation (11) that takes the form [1]:

q(x, t) = κ
q0√
q0q∗0

sech
[
κ (x+ λt)− ln

∣∣∣ q0

2κ

∣∣∣] ei
(
κ2−λ2

2 t−λx
)
. (16)

Equation (16) shows how each of the constants κ, λ, q0 are related with dynamical characteristics of the soliton:
amplitude, velocity and initial position.

Soliton solutions with N > 1 are difficult to write explicitly, however, it is well known that for the interactions
between solitons, these solutions are expressed approximately by a superposition of independent solitons and the
product of the interaction is a shift of the solitons after the collision [1, 10]. Equations (13)-(15) for N = 2 allow to
study any case of two soliton interactions. In Figure 1 are presented some particular solutions, for example, in Figure
1(a) is depicted a frontal collision of two pulses with the same amplitude, on the other hand in Figure 1(b) the solution
describes a fast soliton that passes a slow soliton with the same amplitude, finally Figure 1(c) shows the dynamics
of a frontal collision of solitons with different amplitude. In the case of three solitons are studied collisions of two
solitons with equal amplitude and one soliton with greater amplitude. In Figure 2(a), relative velocities between
solitons are high so that the solution is in good approximation, the superposition of independent solitons. In Figure
2(b) some of the relative velocities are small and nonlinear effects are significant during the interaction and they
produce a shift in the positions of the solitons after the collision.

Fig. 2. Density plot of |q(x, t)| as a function of x and t for three-soliton solutions of the NLS equation. Each soliton is defined by the
parameters: (a) κ1 = 2κ2 = 2κ3 = 4, (q0)1 = 2 (q0)2 = 2 (q0)3 = 8, λ1 = −2, λ2 = −8 and λ3 = 4. (b) κ1 = 2κ2 = 2κ3 = 4,
(q0)1 = 2 (q0)2 = 2 (q0)3 = 8, λ1 = −0.5, λ2 = −2.5 and λ3 = 1.5.
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4. Snake solitons

In the section 2 we have presented a series of manipulations that establish a connection between the one-dimensional
Gross-Pitaevskii equation with time-dependent coefficients (1) and the standard nonlinear Schrödinger equation (5).
All this analysis is valid when the functions R̃(t), Ω(t) are related by the Riccati equation (10). Also, in the section
3 we use a set of algebraic equations (13) to find N -soliton solutions of the nonlinear Schrödinger equation.

In this section we study the particular case γ = 0, Ω = Ω0 constant, and R̃(t) = sech(Ω0t) that describes a
condensate in a harmonic trap with a constant frequency Ω0 and a nonlinear term that is modulated in time. The
resulting nonlinear differential equation has nonautonomous soliton solutions denominated snake solitons due to the
oscillations of the center of mass of the soliton in the trap resembles the movement of a snake [7]. In the following
we use the multisoliton solutions of the nonlinear Schrödinger equation to study analytically different types snake
soliton collision in a harmonic trap.

Now we obtain two snake soliton solutions of the equation (1) from the solutions of the NLS equation plotted in
Figure 1. From the frontal collision in 1(a) is depicted the frontal collision of snake solitons presented in Figure 4, the
results are approximately described by independent nonautonomous solitons due to the short time of the interaction.
On the other hand, in in Figure 4 is presented a two-soliton solution with a slow interaction, in the interaction

Fig. 3. (a) Dynamics and (b) density plot of |Φ(x, t)| for the solution of the GP equation (1) with two snake solitons. The solution is obtained
from (4), (6)-(9) and the two-soliton solution of the NLS equation plotted in Figure 1(a). Other parameters are: Ω0 = 1, r0 = 1 and b = 0.25.

Fig. 4. (a) Dynamics and (b) density plot of |Φ(x, t)| for the solution of the GP equation (1) with two snake solitons. The solution is obtained
from 4, (6)-(9) and the two-soliton solution of the NLS equation plotted in Figure 1(b). Other parameters are: Ω0 = 1, r0 = 1 and b = 0.25.
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Fig. 5. (a) Dynamics and (b) density plot of |Φ(x, t)| for the solution of the GP equation (1) with two snake solitons. The solution is obtained
from the two soliton solution of the NLS equation plotted in Figure 1(c). Other parameters are: Ω0 = 1, r0 = 1 and b = 0.25.

Fig. 6. |Φ(x, t)| for the solution of the GP equation (1) with three snake solitons. The solution is obtained from the three-soliton solution of
the NLS equation plotted in Figure 2. Other parameters are: Ω0 = 1, r0 = 1 and b = 0.25.

the solution is different of the sum of independent solitons. This state has distinct properties of each individual
component, in some contexts these types of solutions are denominated soliton molecules [12, 13]. A similar result
is obtained in Figure 5 for the interaction of solitons with different amplitude and velocity.

Also, we obtain analytically three snake soliton solutions for the equation (1). In Figure 6 we present the results
deduced from the solutions presented in Figure 2. In Figure 6(a), the collisions are fast and as consequence the
solutions are well described by the sum of independent solitons. Otherwise, in Figure 6(b) the solutions interact in
a nontrivial way and the effects on the small soliton are considerable.

5. Remarks and conclusions

In summary, we have used multisoliton solutions of the nonlinear Schrödinger equation to obtain solutions of the
1D Gross-Pitaevskii equation with time-dependent coefficients that are related by means of a Riccati type differential
equation. Although we have restrict our attention to a few selected examples for snake solitons with two and three
nonautonomous soliton solutions, the range of cases with physical relevance is very wide. The methodology used is
general and could be implemented to study solutions of cases that include dissipation and other types of nonlinearities.



A. Pérez et al.; Nonautonomous multisoliton solutions of the 1D GP equation with time-dependent parameters

6. Appendix: Solutions of the Riccati equation

There are numerous forms of Ω2(t) for which explicit solutions of R̃(t) can be obtained [7]. The most important
of them and with physical relevance are given in the Table 1.

Form of Ω2(t) Physically interesting solution of R̃(t)

1. Ω2
0 = constant sec(Ω0t)

2. −Ω2
0 = constant sech(Ω0t), exp(±Ω0t)

3. −Ω2
0

2

[
1− tanh

(
Ω0
2
t
)]

1 + tanh
(

Ω0
2
t
)

4. −Ω0

(
Ω0
2

[1− cos(2λt)] + λ cos(λt)
)

exp
[−Ω0

λ
cos(λt)

]
5. Ω0λ exp(λt)− Ω2

0 exp(2λt) exp
(

Ω0
λ

exp(λt)
)

6. 3Ω0 − Ω2
0t

2 1
t

exp

(
Ω0t

2

2

)
7. Ω0 − Ω2

0t
2 exp

(
Ω0t

2

2

)
8. Ω0ntn−1 − Ω2

0t
2n exp

(
Ω0t

n+1

n+1

)
9. −2

t2
3t
t3+3

10. b̃
t2
, b̃ < 0

(2λ+1)tλ

(2λ+1)+t2λ+1 with λ = −1±
√

1−4b̃
2

11. Ω0tλ− Ω0(Ω0 + λ) coth2(λt) [sinh(λt)]Ω0/λ

12. Ω0t2(1− 2 coth2(Ω0t)) sinh(Ω0t)

13. 3Ω0tλ− λ2 − Ω0(Ω0 + λ) tanh2(λt)
[cosh(λt)]Ω0/λ

sinh(λt)

14. 2Ω2
0 sech2(Ω0t) coth(Ω0t)

15. 3Ω0λ− λ2 − Ω0(Ω0 + λ) coth2(λt)
[sinh(λt)]Ω0/λ

cosh(λt)

16. −2Ω2
0csech2(Ω0t) tanh(Ω0t)

17. Ω0λ− Ω0(a+ λ) tanh2(λt) [cosh(λt)]Ω0/λ

18. Ω2
0(1− 2 tanh2(Ω0t)) cosh(Ω0t)

19. −Ω2
0 + Ω0λ sinh(λt)− Ω2

0 sinh2(λt) exp
(

Ω0
λ

sinh(λt)
)

20. −2Ω2
0

[
tanh2(Ω0t) + coth2(Ω0t)

]
cosh(Ω0t) sinh(Ω0t)

21. −Ω2
0 + Ω0λ cos(λt) + Ω2

0 cos2(λt) exp
(−Ω0

λ
cos(λt)

)
22. −Ω2

0 + Ω0λ sin(λt) + Ω2
0 sin2(λt) exp

(−Ω0
λ

sin(λt)
)

23. Ω0λ+ Ω0(λ− Ω0) tan2(λt) sec(Ω0t)Ω0/λ

24. λ2 + 3Ω0λ+ Ω0(λ− Ω0) tan2(λt)
sec(Ω0t)

Ω0/λ

sin(λt)

25. λ2 + 3Ω0λ+ Ω0(λ− Ω0) cot2(λt)
sec(Ω0t)

sin(λt)Ω0/λ

26. Ω0λ+ Ω0(λ− Ω0) cot2(λt) 1

sin(λt)Ω0/λ

27. −2Ω2
0

[
tan2(Ω0t) + cot2(Ω0t)

]
cos(Ω0t) sin(Ω0t)

Table 1
Explicit solutions of the Riccati equation (10) for different forms of Ω2(t). The physical context and the implementation of some of these
solutions are discussed in the Reference [7].
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