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Instituto de Fı́sica Teórica (IFT/UNESP), UNESP - São Paulo State University
Caixa Postal 70532-2, 01156-970, São Paulo, SP, Brazil

Aceptado Mayo; Publicado en lı́nea Junio.

ISSN 2256-3830.

Resumen

En este trabajo se cuantizara la teorı́a electromagnética de Podolsky utilizando la formulación de integrales
de trayectoria y la aproximación de Dirac para determinar la estructura de ligaduras de la teorı́a. El método
de Faddeev-Senjanovic permitirá calcular la amplitud de transición de la que derivaremos el propagador
del campo.

Palabras Claves: Teorı́a Electromagnética de Podolsky, Método de Dirac, Amplitud de Transición vació-vació, Propagador del
Fotón.

Abstract

In this work we quantize the Podolsky’s Electromagnetic Theory using the path integral formalism fol-
lowing the Dirac’s approach to determine the constraint structure. The Faddeev-Senjanovic method will
determine the transition amplitude from which we derive the field propagator.
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1. Introduction

Field theories with higher order derivative Lagrangians have have been study actively in the past [1]. This kind of
theories have been used to solve the problem of renormalization of the gravitational field by inserting a quadratic term
of the scalar curvature to the Einstein-Hilbert lagrangian [2]. Recently, higher order derivative Lagrangians have been
used as a method for regularization of the ultraviolet divergences of gauge invariance supersymmetric theories [3].

Effective models in gauge theories were proposed through of the possibility of use higher order derivative La-
grangians. Yang-Mills can be approximated, at the limit of strong coupling, by an effective lagrangian containing
the second derivative of the field strength tensor [4]. From the possibility that the gluon propagator could have an
infrared asymptotic behaviour, was proposed an effective Lagrangian containing a cubic term in the field strength
tensor and a quadratic term in the the first covariant derivative of the same tensor [5].

In fact, one of the first attempts to use higher order lagrangian dates back to work from Boop, Podolsky and Schwed
[6] who attempt to modify the Maxwell’s electrodynamics to get rid of the infinities of the theory such as the electron
self-energy and the vacuum polarization current. In the non-quantum case this difficulties has been overcome by
adding to the Maxwell’s Lagrangian a quadratic term in the divergence of the field strength tensor. The above theory
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has many interesting features already at the classical level. It gives the correct expression for the self-force of charged
particles at short distances [7], the theory also preserves invariance under U(1), and yields field equations that are
still linear in the fields. It was showed that the Podolsky’s lagrangian is the unique linear second order generalization
from Maxwell-Lorentz theory and the most general one for the U(1) gauge group [8]. The important prediction
of the model is the existence of massive photons, where the mass is proportional to the inverse of the Podolsky’s
parameter a, which allow that experiments may test the generalized electrodynamics as a viable effective theory.

The canonical quantization of the theory was tried in the paper of Podolsky and Schwed [6]. However, Podolsky’s
theory suffer the same difficulties of the standard electromagnetic field, the presence of a degenerate variable, which
had forced them to use a Fermi-like Lagrangian. Moreover, the chosen gauge fixing, the usual Lorenz condition,
does not fulfill the requirements for a good gauge choice in the context of Podolsky’s theory. The first consistent
approach to the quantization of the theory was given by Galvão and Pimentel [9], where they analyzed the generalized
electrodynamics from the Hamiltonian point of view, using the Dirac’s theory for constrained systems [10]. The
problem of gauge fixing for the theory was studied in detail and the correct generalization of the radiation gauge was
obtained and the Dirac Brackets (DB) for the dynamical variables in this gauge were calculated.

The present work is addressed to study the functional quantization of the Podolsky’s electromagnetic theory. The
paper is organized as follow. In the Sect. 2, we present a brief review of the dynamics of the theory. In Sect. 3, we
present the analysis of the canonical structure of the theory. In Sect. 4, we calculate the corresponding covariant
vacuum-vacuum amplitude and derive the photon propagator. At the end, we present our conclusions.

2. Dynamics of the Podolsky theory

The Podolsky’s electromagnetic theory is based on the following lagrangian density

L = −1

4
FµνFµν +

a2

2
∂λF

αλ∂ρFαρ (1)

where the field-strength tensor is expressed in terms of the potential in the usual way, Fµν = ∂µAν − ∂νAµ, a
is a constant with the dimensions of length. The above lagrangian reduces to Maxwell theory when a = 0. The
Euler-Lagrange equations of motion follow from Hamilton’s principle, δS = δ

∫
Σ
d4x L = 0, with δxµ = 0 and

δAµ|∂Σ = 0, where ∂Σ is the boundary of Σ and are given by

L[Aθ] =
∂L
∂Aθ

− ∂µ
∂L

∂ (∂µAθ)
+ ∂µ∂ν

∂L
∂ (∂µ∂νAθ)

=
(
1 + a2�

)
∂µF

µθ = 0 (2)

with � ≡ ηµν∂µ∂ν . Podolsky Lagrangian does not lead to the equations of motion expected from the Maxwell
theory, therefore, they are non-equivalent descriptions of the Abelian gauge field. Defining the electric and magnetic
field by Ei = F 0i and Bi = 1

2ε
ijkFjk respectively, the lagrangian assumes the form

L =
1

4

(
E2 −B2

)
+

a2

2

[
(∇ ·E)

2 −
(
Ė−∇×B

)2
]
, (3)

while the equation of motion are written as(
1 + a2�

)
∇ ·E = 0 ,

(
1 + a2�

) (
Ė−∇×B

)
= 0. (4)

The symmetric Energy-Momentum density tensor reads [11]:

T µν =Fµ
λF

λν − ηµνL+ a2
(
2∂λFµξ∂λF

ν
ξ+

−2∂λF ξµ∂ξF
ν

λ + ∂λF
λµ∂ξF

ξν
)
. (5)

The energy density E is the component T 00 of this tensor. It is possible to write E in terms of the electric and
magnetic fields:

E =
1

2

{
E2 +B2 + a2

[
(∇ ·E)

2
+
(
Ė−∇×B

)2

+ 4E ·2E+ 4E · ∇ (∇ ·E)

]}
. (6)
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This expression appears to not be positive-definite in the general case. However, if we restrict it to the electrostatic
case, we have for the energy:

Eelectrost. =

∫
d3x Eelectrost. =

1

2

∫
d3x

[
E2 + a2 (∇ ·E)

2
]
. (7)

Once we impose the condition Eelectrost. ≥ 0, we have the implication that the parameter a must be real and,
without loss of generality, we assume it to be positive. For a point charge the electrostatic potential is given by

ϕ (r) =
e

r

(
1− e−

r
a

)
(8)

and it is possible to prove that the total energy has a finite value equal to e2

2a , this being a remarkable result. The
expression for ϕ (r) show the presence of a Yukawa-type potential besides the usual Coulomb potential.

3. Constraints structure

In passing to Hamiltonian formalism it is possible to show that the lagrangian which describe the theory is singular
[10]. The canonical momenta pµ and πµ conjugate to Aµ and φµ respectively, where φµ ≡ ∂0Aµ is considered as
an independent variable, are defined by [9]:

pµ ≡ ∂L
∂φµ

− ∂0
∂L

∂ (∂0φµ)
− 2∂k

∂L
∂ (∂kφµ)

= Fµ0 − a2
[
ηµk∂k∂λF

0λ − ∂0∂λF
µλ

]
(9)

πµ ≡ ∂L
∂ (∂0φµ)

= a2
[
ηµ0∂λF

0λ − ∂λF
µλ

]
with the above expressions we get the primary constraints

Ω1 ≡ π0 ≈ 0 , Ω2 ≡ p0 − ∂kπ
k ≈ 0 (10)

Following the Dirac’s procedure we define the canonical Hamiltonian density, which to higher order derivative is
defined by

HC ≡ pµȦµ + πµφ̇µ − L (11)

= pµφµ +
1

4a2
(
πk

)2
+ πk (∂kφ0 − ∂lFkl)−

1

2
(φk − ∂kA0)

2
+

1

4
(Fkl)

2 − a2

2
(∂kφk − ∂k∂kA0)

2 (12)

now, we add an arbitrary linear combination of the primary constraints (10) to the canonical hamiltonian to obtain

HP =

∫
d3y

[
HC + u1 (y)Ω1 (y) + u2 (y) Ω2 (y)

]
(13)

here ui are Lagrange multipliers. The relation (13) is defined as the primary Hamiltonian and the Dirac’s procedure
tell us that the primary constraints must be preserved in the time under time evolution generated by the primary
Hamiltonian by requiring that they have a weakly vanishing PB with the HP ,

(
Ω̇i = {Ωi,HC} ≈ 0, i = 1, 2

)
. With

the fundamental Poisson brackets (PB) defined by

{Aµ (x) , p
ν (y)} = δνµδ

3 (x− y) , {φµ (x) , π
ν (y)} = δνµδ

3 (x− y) , (14)

such requirement yields
Ω̇1 = −Ω2 ≈ 0 , Ω̇2 = ∂kp

k ≡ Ω3 (x) ≈ 0 (15)

so that there is a secondary constraint where Ω̇3 ≈ 0. the set of constraints Ω ≈ 0, i = 1, 2, 3 are clearly first class

[10] and no more constraints are generated. Finally we can write the extended Hamiltonian as

HE =

∫
d3y [HC +wa (y)Ωa (y)] , a = 1, 2, 3. (16)

this is the Hamiltonian that generates the time evolution of the system with full gauge freedom. We analyse the
Hamiltonian equations of motion, thus the dynamics of the fields is given by
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∂0Aµ = δ0µ
(
φ0 +w2

)
+ δkµ

(
φk − ∂kw

3
)

(17)

∂0φµ = δ0µw
1 + δkµ

[
− 1

a2
πk + ∂kφ0 − ∂nFkn + ∂kw

2

]
and for the canonical momenta

∂0p
µ = δµ0

[
∂m (φm − ∂mA0)− a2∇2

(
∂mφm −∇2A0

)]
+ δµk

[
∂mFmk + ∂k∂mπm −∇2πk

]
,

∂0π
µ = δµ0

[
−p0 + ∂mπm

]
+ δµk

[
−pk + φk − ∂kA0 − a2∂k

(
∂mφm −∇2A0

)]
. (18)

from (17) and (18) it is easy to obtain(
1 + a2�

)
∂λF

λµ ≈ −δµ0
(
1− a2∇2

)
∇2w3 (19)

thus, the equation of motions are consistent with its lagrangian form (2) if we chose w3 = 0.
The Dirac’s algorithm requires as many gauge conditions as first class constraints there are. However, such gauge

fixing conditions must be compatible with the Euler-Lagrange equations and therefore they must fix the Lagrange
multipliers wa and with together the first class constraints must be a second class set. Galvão and Pimentel showed
that a set of appropriated non-covariant canonical gauge conditions which allow to fix the first class constraint are [9]

Σ1 ≡A0 ≈ 0

Σ2 ≡ φ0 ≈ 0 (20)

Σ3 ≡
(
1 + a2�

)
∂kAk ≈ 0

4. Path integral quantization

Now, we will construct the transition amplitude for Podolsky’s electromagnetic theory. The path integral quantiza-
tion is accomplished according to Faddeev-Senjanovic method [12], by extending their expression for the partition
function to higher order theories. We have to pay attention to the fact that φµ ≡ ∂0Aα is now an independent canon-
ical variable, and consequently, it has also to be functionally integrated [13]. Thus, the expression of the transition
amplitude can be written in the following way

Z =

∫
Dµ exp

{
i

∫
d4x [pµ∂0Aµ + πµ∂0φµ −HC ]

}
, (21)

and HC is the canonical hamiltonian is given by (11).The integration measure is defined by

Dµ ≡ DπµDφµDpµDAµ det |{Ωa,Σb}| δ (Ωa) δ (Σb) (22)

Here, det
∣∣{Ωα,Σβ}B

∣∣ represent the determinant formed by the brackets between the first class constraints and the
gauge fixing conditions. We can determine that this determinant take the form

det
∣∣∣ {Ωα,Σβ}

∣∣∣ = det
∣∣∣ −

(
1 + a2∇2

)
∇2

∣∣∣ . (23)

thus, it does not contain field variables and can be absorbed in a normalization constant.
Introducing (10), (11), (15), (20) and (22) into (21), integrating over the momenta and field variables and using

the delta functional, we arrived in the following expression for the transition amplitude

Z =

∫
DAµ det

∣∣∣ −
(
1 + a2∇2

)
∇2

∣∣∣ δ [(1 + a2�
)
∂kAk

]
exp

{
i

∫
d4x

[
−1

4
FµνF

µν +
a2

2
∂µFµβ∂αF

αβ

]}
.

(24)
However, the last expression is non-covariant, thus, for calculation purposes we can use the ansatz of Faddeev-Popov-
De Witt [14] to get a covariant expression for the transition amplitude. Like pointed by Pimentel and Galvão [9] the
usual Lorenz gauge condition, ∂µAµ = 0, is not a suitable gauge choice because it does not satisfy a certain number
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of requirements necessary to be a good gauge condition for the theory. They showed that the generalized Lorenz
gauge condition

f =
(
1 + a2�

)
∂µAµ. (25)

satisfy all the requirements stated [9] and this choice of gauge is as natural in Podolsky’s theory as the Lorentz gauge is
in Maxwell’s electrodynamics. So, in this way, we obtain the desired covariant vacuum-vacuum transition amplitude

Z =

∫
DAµ det

∣∣∣ −
(
1 + a2�

)
�
∣∣∣ δ [f −

(
1− 2a2�

)
∂µA

µ
]

(26)

exp

{
i

∫
d4x

[
−1

4
FµνF

µν +
a2

2
∂µFµβ∂αF

αβ

]}
.

Where the generating functional is independent of f (x)we can integrate in f (x)with weight exp
(
− i

2ξ

∫
d4xf2 (x)

)
,

thus we obtain
Z =

∫
DAµ det

∣∣∣ −
(
1 + a2�

)
�
∣∣∣ exp {iSξ [Aµ]} (27)

with

Sξ [Aµ] ≡
∫

d4x

[
−1

4
FµνF

µν +
a2

2
∂µF

µα∂νF
ν
α − 1

2ξ

[(
1 + a2�

)
∂µA

µ
]2]

(28)

In this covariant gauge choice we see that the Faddeev-Popov-De Witt determinant not contain field variables (the
ghost are uncoupling with gauge fields) and so, it also can be absorbed in a normalization constant N .

Next let us define the generating functional

Z [Jµ] = N

∫
DAµ exp [iSeff ] , (29)

where

Seff =

∫
d4x

[
−1

2
AµP

µνAν +AµJµ

]
(30)

and with Pµν defined by
Pµν ≡ −�gµν + a2�

[
−�gµν −

(
1 + a2�

)
∂µ∂ν

]
. (31)

Here Jµ are the sources associated to the photon field. We have toked ξ = 1 which represent the generalized Feynman
gauge condition. From Z [Jµ], the Feynman propagator associated with Aµ is obtained by functional differentiation
of the following way 〈

T Âµ (x) Âν (x)
〉
= − δ2

δAµ (x) δAν (x)
Z [Jµ] , (32)

where T denote time ordering. After a laborious calculus, is possible to show that the Photon propagator is

Dµν (x, y) =
gµν
�x

δ4 (x− y)−
{

gµν +

[
1

�x
− 1

�x + 1
a2

]
∂x
µ∂

x
ν

}
1(

�x + 1
a2

)δ4 (x− y) (33)

which in the momentum space can be write

Pµν (k) = − i

k2
gµν + i

{
gµν +

[
1

k2
− 1

k2 − 1
a2

]
kµkν

}
1(

k2 − 1
a2

) (34)

5. Remarks and conclusions

In this work we have quantized the Podolsky’s electromagnetic theory. The covariant vacuum-vacuum transition
amplitude was derived in the generalized Lorentz gauge condition. We observed that the Faddeev-Popov-De Witt
determinant did not contain field variables, thus, the ghost are uncoupling with the gauge field, and the determinant
can be absorbed in a normalization constant. From the generating functional, the Feynman propagator associated
with photon field was derived and we observed that in addition of the massless photon there is massive contribution,
where the mass is proportional to the inverse of the Podolsky’s parameter: m = 1

a .
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