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Abstract: This paper presents a comparative analysis of chaotic behavior in two fundamental one-

dimensional dynamical maps: the sine map and the logistic map. The study employs bifurcation

diagrams, Lyapunov exponent calculation, and a descriptive statistical analysis of their attrac-

tors’distribution to visualize and quantify the similarities and differences in their transitions to

chaos and the structure of their attractors. The results confirm the expected characteristics in both

systems, revealing the classic period-doubling cascade and the presence of strange attractors. It

is highlighted that, while both exhibit chaos, the visual and statistical analysis reveals distinctive

differences in the distribution and form of their chaotic attractors, such as the banded distribution

for the logistic map and a denser occupation at the extremes for the sine map. These findings con-

tribute to a better understanding of the universality and particularities of chaotic systems, serving

as a basis for more advanced studies and practical applications.

Keywords. Dynamical maps, Chaos, Sine map, Logistic map, Chaotic attractors, Lyapunov expo-

nent.

Resumen: Este documento presenta un análisis comparativo del comportamiento caótico en dos

mapeos dinámicos unidimensionales fundamentales: el mapeo seno y el mapeo loǵıstico. El estudio

emplea diagramas de bifurcación, el cálculo del exponente de Lyapunov, y un análisis estad́ıstico

descriptivo de la distribución de sus atractores para visualizar y cuantificar las similitudes y dife-

rencias en sus transiciones al caos y la estructura de sus atractores. Los resultados confirman las

caracteŕısticas esperadas en ambos sistemas, revelando la clásica cascada de duplicación de peŕıodo

y la presencia de atractores extraños. Se destaca que, si bien ambos exhiben caos, el análisis visual

y estad́ıstico pone de manifiesto diferencias distintivas en la distribución y forma de sus atractores

caóticos, como la distribución en bandas para el mapeo loǵıstico y una ocupación más densa en los

extremos para el mapeo seno. Estos hallazgos contribuyen a una mejor comprensión de la universa-

lidad y particularidades de los sistemas caóticos, sirviendo como base para estudios más avanzados

y aplicaciones prácticas.
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1. Introducción

El estudio de los sistemas que evolucionan en el tiempo, conocidos como sistemas dinámicos,
tiene sus ráıces en las teoŕıas clásicas del determinismo de Galileo y Newton en el siglo XVII.
Sin embargo, fue el matemático francés Henri Poincaré (finales del siglo XIX - principios
del siglo XX) quien, con sus trabajos sobre la sensibilidad a las condiciones iniciales en
sistemas de tres cuerpos, sentó las bases de la teoŕıa moderna de los sistemas dinámicos y,
de forma precursora, las primeras afirmaciones sobre comportamientos complejos como el
caos. Poincaré descubrió que pequeños cambios en las condiciones iniciales de un sistema que
evoluciona pod́ıan producir enormes diferencias en los fenómenos finales ([Schifter(2024)]).

Con la invención de los ordenadores, el matemático y meteorólogo Edward Lorenz, en 1963,
al tratar de modelar el complejo movimiento de la atmósfera, generó una gráfica especial
conocida como el atractor de Lorenz, marcando el nacimiento de la Teoŕıa del Caos
([Gleick(2008)]). A pesar de que por un tiempo los resultados de Lorenz pasaron desaper-
cibidos por la comunidad cient́ıfica, la década de 1970 representó el auge de la Teoŕıa del
Caos. En este periodo se destacan los aportes de [Li and Yorke(1975)] por establecer las
primeras definiciones matemáticas de caos en sistemas dinámicos discretos; [May(1976)] con
su contribución fundamental, que a su vez representa la motivación de este art́ıculo, al es-
tudiar la ecuación loǵıstica como un modelo simple que, mediante un proceso recurrente,
exhibe el paso de lo ordenado al caos y viceversa; y [Feigenbaum(1978)] quien introdujo la
constante de Feigenbaum (δ) y la universalidad de la cascada de duplicación de peŕıodo en
mapas unimodales. Desde entonces, la Teoŕıa del Caos es un campo de gran interés para la
comunidad cient́ıfica.

Los mapeos dinámicos unidimensionales constituyen herramientas fundamentales para el
estudio de sistemas no lineales y el fenómeno del caos. La ecuación loǵıstica, en particular,
se erige como un ejemplo clásico que ha facilitado la comprensión de conceptos cruciales
como las cascadas de duplicación de peŕıodo, los exponentes de Lyapunov y la universalidad
de Feigenbaum ([Abarbanel(1996)]). No obstante, la exploración de otras funciones, como el
mapeo basado en la función seno, ofrece una valiosa oportunidad para observar cómo estas
propiedades se manifiestan en sistemas con caracteŕısticas matemáticas diferentes.

Si bien la ecuación loǵıstica y el mapeo seno puro han sido profundamente estudiados
por sus ricas dinámicas caóticas [May(1976), Lalescu(2010)], las exigencias crecientes de
aplicaciones en campos como la criptograf́ıa y la optimización numérica han impulsado
el desarrollo de sistemas caóticos más robustos. Esto ha llevado a la creación de mapeos
h́ıbridos o modificados que buscan potenciar las propiedades caóticas inherentes, tales
como una mayor sensibilidad a las condiciones iniciales, rangos caóticos más amplios
y distribuciones estad́ısticas mejoradas. Ejemplos recientes incluyen el uso de modelos
de caotificación basados en la función seno para amplificar el caos en mapas existentes
([Hua et al.(2019)Hua, Zhou, and Zhou]), el desarrollo de mapas h́ıbridos como el loǵıstico-
seno para métodos de optimización ([Demir et al.(2020)Demir, Tuncer, and Kocamaz]), y la
creación de nuevos mapas unidimensionales potenciados por seno para esquemas avanzados
de encriptación de imágenes ([Mansouri and Wang(2020)]). Estos avances resaltan la
importancia de comprender a fondo las propiedades dinámicas y estad́ısticas de los mapeos
unidimensionales fundamentales, como los analizados en este trabajo.

Este documento presenta un análisis descriptivo y comparativo del mapeo seno y la ecua-
ción loǵıstica. Si bien se proporcionan los fundamentos necesarios, el enfoque principal no
radica en las profundidades de la teoŕıa matemática o en los algoritmos de implementación
detallados, sino en los resultados y su interpretación. El objetivo primordial es motivar al
lector, especialmente a aquellos menos familiarizados con el tema, y despertar la curiosidad
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por estos sistemas de naturaleza determińıstica que poseen la capacidad de evolucionar ha-
cia comportamientos caóticos. El análisis se estructurará alrededor de los siguientes puntos
clave:

La generación de diagramas de bifurcación.

El cálculo del exponente de Lyapunov como medida cuantitativa del caos.

El análisis espectral (espectrogramas) para identificar la presencia de frecuencias dis-
cretas o continuas.

El análisis estad́ıstico (histogramas y momentos) para caracterizar la distribución de
los atractores.

La implementación computacional que genera los mapeos de bifurcación, los gráficos del
exponente de Lyapunov, los espectogramás e histogramas, se hacen desde Python versión
3.13, el código completo se puede revisar desde la plataforma personal de GitHub o ir al
siguiente url: https://github.com/Germarcillo/Codigo_MapeoSeno.git.

2. Mapeos en Estudio

Se analizarán dos mapeos recursivos, dadas por las funciones unidimensionales dependientes
de un sólo parámetro de control R, la función seno:

f(x) = sin(R · x)
donde, R ∈ [0, 10] y x = x0 tomará un valor inicial fijo en el intervalo [0, 1] de manera que la
función se iterará a partir de este valor fijo generando la trayectoŕıa o mapeo de bifurcación
{x1, x2, x3, ...} según el proceso:

xn+1 = f(xn, R) = sin(R · xn)

De manera similar para la ecuación lógistica:

f(x) = Rx(1− x)

donde, R ∈ [0, 4] con el mismo valor inicial x = x0, generando el mapeo loǵıstico según el
proceso

xn+1 = f(xn, R) = Rxn(1− xn)

Es importante aclarar que el intervalo para el parámetro de control R no es el mismo para
cada función, debido a que en el proceso iterativo la ecuación loǵıstica diverge rapidamente a
−∞, entonces el sistema no tendrá atractores, los cuales se clasifican en atractores de punto
fijo, de ciclo ĺımite o extraño (caótico) (Strogatz et al, 2018)

3. Metodoloǵıa de Análisis

El análisis descriptivo y comparativo de los mapeos de las dos funciones mediante el proceso
recursivo, se soporta en cinco pilares fundamentales como son: los mapeos o diagramas de
bifurcación, el exponente de Lyapunov para cada mapeo, la complejidad del sistema, el
análisis espectral y el análisis estad́ıtico descriptivo de la distribución de los atractores.
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3.1. Diagrama de Bifurcación

El diagrama de bifurcación es una herramienta visual que muestra los valores asintóticos de
xn para cada valor del parámetro R. Permite identificar:

Puntos fijos estables (una sola ĺınea horizontal).

Ciclos periódicos (múltiples ĺıneas discretas).

Regiones caóticas (bandas densas de puntos).

Ventanas de periodicidad dentro del caos.

Para su generación, se realiza un barrido de valores de R. Para cada R, se itera el sistema
un número suficiente de veces para eliminar el comportamiento transitorio (“warm-up ite-
rations“) y luego se grafican los puntos subsiguientes. Para cada mapeo (seno y loǵıstico) y
para valores de parámetro R representativos de reǵımenes periódicos y caóticos, se sigue el
siguiente procedimiento:

Se simula el mapeo xn+1 = f(xn, R) para un número elevado de iteraciones (N = 1000 en
este estudio). Se descarta un periodo inicial de calentamiento (“warm-up iterations“ = 800)
para asegurar que solo se analice el comportamiento asintótico del atractor.

3.2. Exponente de Lyapunov

El exponente de Lyapunov (λ) es una medida cuantitativa de la sensibilidad de un sistema
dinámico a las condiciones iniciales.

Si λ < 0: El sistema es estable, converge a un punto fijo o a un ciclo periódico.

Si λ = 0: El sistema se encuentra en un estado cŕıtico, como un punto de bifurcación.

Si λ > 0: El sistema es caótico, indicando que trayectorias inicialmente cercanas di-
vergen exponencialmente.

Se calcula como el promedio logaŕıtmico del valor absoluto de la derivada de la función de
mapeo en cada punto de la trayectoria:

λ = ĺım
N→∞

1

N

N−1∑
i=0

ln

∣∣∣∣df(xi)

dx

∣∣∣∣
Para el mapeo seno, f(x) = sin(R · x), la derivada es f ′(x) = R cos(R · x). Para la ecuación
loǵıstica, f(x) = Rx(1 − x), la derivada es f ′(x) = R(1 − 2x). Es fácil notar que estas
funciones son diferenciables y continuas, pero también poseen la propiedad de la concavi-
dad/convexidad, esto confiere una gran riqueza en su comportamiento asintótico hacia el
caos y permite a su vez el cálculo del exponente de Lyapunov. La implementación de este
algoŕıtmo no es compleja y puede ser revisada en el GitHub previamente compartido.
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3.3. Complejidad del Sistema

Este método complementa el diagrama de bifurcación al cuantificar el número de valores
distintos (redondeados para manejar la precisión de los flotantes) que alcanza la trayectoria
en su estado asintótico para cada valor de R. Un bajo número de valores únicos indica
periodicidad, mientras que un alto número sugiere caos.

3.4. Análisis Espectral (Espectrograma)

El análisis espectral se emplea para caracterizar la distribución de frecuencias de las series
temporales generadas por los mapeos. Esto permite diferenciar entre el comportamiento
periódico, que se manifiesta con frecuencias discretas y picos ńıtidos, y el comportamiento
caótico, que exhibe un espectro de frecuencias continuo y de banda ancha.

Para el cálculo de la Densidad Espectral de Potencia (PSD) Se utiliza desde Python
el método de Welch con las librerias matplotlib.pyplot, pandas y scipy.signal, el código
completo se puede revisar en el GitHub. Los resultados se presentan en gráficos de densidad
espectral de potencia (en dB/Hz) versus frecuencia (ciclos/iteración).

Los valores de R seleccionados para este análisis son:

Mapeo Seno:

• Periódico: R = 1.6 (punto fijo)

• Caótico: R = 6.9 (región de caos)

Mapeo Loǵıstico:

• Periódico: R = 3.2 (ciclo ĺımite Periodo 2)

• Caótico: R = 3.9 (región de caos)

3.5. Análisis Estad́ıstico de la Distribución de Atractores

Este análisis busca caracterizar la distribución de probabilidad de los valores de xn en el
atractor, revelando propiedades intŕınsecas del estado estacionario del sistema. Se realiza
mediante histogramas y el cálculo de momentos estad́ısticos.

3.5.1. Histogramas de Frecuencia

1. Generación de la Trayectoria: Se simula nuevamente el mapeo pero esta vez para
N = 20000 iteraciones con un “warm-up“ de 10000 para obtener una representación
fidedigna del atractor.

2. Construcción del Histograma: Se construye un histograma de los valores de xn

obtenidos, normalizando la altura de las barras para representar la densidad de pro-
babilidad.

3. Visualización: Los histogramas permiten observar la forma de la distribución de los
puntos del atractor en el espacio de fase.

Los mismos valores de R seleccionados para el análisis espectral son utilizados para la gene-
ración de histogramas.
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3.5.2. Momentos Estad́ısticos

Para cuantificar la distribución de los atractores, se calculan los primeros cuatro momentos
estad́ısticos de las trayectorias de xn+1 (después del transitorio):

Media: µ = E[X], el valor promedio de la trayectoria.

Varianza: σ2 = E[(X − µ)2], una medida de la dispersión de los datos alrededor de
la media.

Asimetŕıa: γ1 = E[
(

X−µ
σ

)3

], mide la falta de simetŕıa de la distribución. Un valor

de 0 indica simetŕıa.

Curtosis: γ2 = E[
(

X−µ
σ

)4

] − 3, mide la ”puntiagudez”de la distribución y la ”pesa-

dez”de sus colas en comparación con una distribución normal. Un valor de 0 indica
curtosis similar a la normal (mesocúrtica).

Estos momentos proporcionan una caracterización numérica concisa de la forma y concentra-
ción de los puntos en el atractor, siendo particularmente útiles para comparar las propiedades
de los atractores caóticos de diferentes mapeos. Los resultados se tabularán para facilitar la
comparación.

4. Resultados y Comparación

4.1. Diagramas de Bifurcación

Para exponer como ejemplo la situación de bifurcación de periodo dos en el proceso recursivo
de xn+1 = sin(R · xn) , se toma el valor de R ≈ 2.2, con la condición inicial x0 = 0.3.
Como se observa en el cuadro 1, el proceso de evaluación recursivo despues de un numero
grande de iteraciones (100) resultará en dos valores diferentes 0.90918 y 0.90921, es decir
una bifurcación de periodo 2.

Tabla 1: Iteración recursiva de periodo 2 para R ≈ 2.2 y x0 = 0.3

Iteración (n) Valor de xn

0 0.30000
1 0.613117
2 0.975472
3 0.839060
4 0.962388
...

...
95 0.909181
96 0.909215
97 0.909184
98 0.909212
99 0.909187
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Las figuras 1 y 2 muestran los diagramas de bifurcación para el mapeo seno y la ecuación
loǵıstica, respectivamente, aqúı la condición inicial no trivial como valor de partida del pro-
ceso recursivo elegida para la construcción de cada mapeo es x0 = 0.3, aunque se hubiese
podido elegir cualquier otro valor en el intervalo (0,1), el objetivo es poder capturar los
atractores de punto fijo, de ciclo ĺımite o extraño (caótico). se evalua la función Para garan-
tizar que el diagrama de bifurcación muestre el comportamiento a largo plazo del sistema
para cada valor de R en su dominio previamente determinado, el algoritmo computacional
tomará 2000 valores de R, con un número total de 1000 iteraciones de las cuales las últimas
200 iteraciones con sus resultados correspondientes de xn+1 se utilizarán para generar los
mapeos como conjunto de puntos (R, xn+1).

Figura 1: Diagrama de Bifurcación para xn+1 = sin(R·xn)

Figura 2: Diagrama de Bifurcación para la Ecuación Loǵıstica xn+1 = R xn (1 - xn)

A partir de los gráficos se observa que el mapeo seno exhibe una cascada de duplicación
de peŕıodo seguida de caos, con varias ventanas periódicas, es decir, el atractor es de punto
fijo cuando R ∈ [0, 2.3], para luego observar dos bifurcaciones (periodo 2), luego cuatro,
hasta un escenario donde las trayectorias se pierden (caos), si bien, sólo se puede realizar un
deducción visual, computacionalmente se puede generar una lista de datos más precisa, en
donde el atractor de punto fijo (periodo 1) pasa a un atractor de periodo 2 cuando R ≈ 1.57,
de periodo 2 a 4 cuando R ≈ 2.2 de periodo 4 a 8 cuando R ≈ 2.45, inicio del caos cuando
R ≈ 2.716. La forma general del atractor caótico difiere de la loǵıstica, con un patrón más
ondulado debido a la naturaleza sinusoidal de la función. El rango de x está inherentemente
acotado a [−1, 1].
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El mapeo loǵıstico muestra la clásica cascada de duplicación de peŕıodo, seguida por el
caos, con sus caracteŕısticas ventanas periódicas, el paso de periodo 1 a periodo 2 ocurre
exactamente en R = 3, de periodo 2 a 4 cuando R ≈ 3.449, de periodo 4 a 8 en R ≈ 3.544
y el paso al caos cuando R ≈ 3.569. El rango de x está acotado a [0, 1] (para R ∈ [0, 4]).
La escala del parámetro R en la que ocurren las bifurcaciones y el inicio del caos difiere
significativamente entre ambos mapas. La estructura fractal del atractor caótico también
presenta patrones visualmente distintos.

4.2. Complejidad de cada sistema

Analizar la complejidad de cada sistema (el número de estados distintos visitados) en las
regiones donde ocurren las bifurcaciones y el caos, permite dar otra perspectiva sobre su
dinámica y estimar visualmente los valores del parametro R que generan las transiciones de
los estados, si bien los mapas de las bifurcaciones permiten una estimación visual, como ya se
analizó, se puede mejorar dicho analisis aumentando la complejidad de los cálculos, es decir,
esta vez en lugar de simplemente encontrar los resultados y graficarlos, para cada valor de R,
se obtienen todas las soluciones de la ecuación en iteraciones sucesivas y se almacenan en un
conjunto definido. Luego se contabiliza el número de resultados no repetitivos en cada uno de
estos conjuntos. Finalmente, se respresentan los resultados del recuento en un diagrama, las
figuras 3 y 4 muestran respectivamente la complejidad para el Mapeo Loǵıstico y el Mapeo
Seno.

Figura 3: Diagrama de complejidad para el mapeo seno xn+1 = sin(R·xn)

En este paso, se calculan los resultados de la función seno y logistica para 20000 valores
diferentes de su correspondiente valor R. Y para cada uno de estos puntos, se aumenta el
número de iteraciones consecutivas a 1200. De esta manera, obtenemos mil resultados para
el valor de xn+1 en cada caso, pues las primeras 200 se utilizan para representar las po-
sibles convergencias. Luego contamos los números no repetitivos de estos 1000 resultados.
Por ejemplo, si todos son iguales, el número 1 (Punto Fijo), si hay dos tipos de números,
el número 2 (Peŕıodo=2), o si todos los resultados son diferentes, el número 1000 (Caos)
es el resultado de los cálculos de este paso. Finalmente, representamos los 20,000 resulta-
dos observables en los gráficos presentados.Con esto se ratifica lo encontrado en la sección
anterior.
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Figura 4: Diagrama de complejidad para el mapeo loǵıstico xn+1 = R xn (1 - xn)

4.3. Exponente de Lyapunov

La figura 5 presenta el exponente de Lyapunov en función del parámetro R para cada función.

Figura 5: Exponente de Lyapunov para xn+1 = sin(R·xn) y xn+1 = R xn (1 - xn)

La figura 5 presenta claramente las transiciones de los estados del atractor, en el paso de lo
peŕıodico a lo caótico, la linea punteada horizontal representa el valor nulo del exponente de
lyapunov (λ = 0), si λ < 0 entonces el corrrespondiente mapeo estará en una región estable
o periódica, pero si λ > 0 entonces la trayectoria ha evolucionado a una región caótica, el
cuadro 1 cuant́ıfica para cada caso las primeras cinco transiciones. Para el mapeo seno se
observa su primer paso al caos cuando R = 2.716 mientras que para el mapeo loǵıstico esta
primer transición se da cuando R ≈ 3.569. Las cáıdas abruptas a valores negativos dentro
de las regiones caóticas confirman la presencia de ventanas de periodicidad. La transición al
caos y las ventanas periódicas son claramente visibles por los cambios en el signo de λ. La
magnitud y la distribución de los valores de λ son espećıficas para cada mapa. La forma en
que λ se vuelve positivo, y la secuencia de las ventanas periódicas, son caracteŕısticas de la
dinámica subyacente de cada función. El valor máximo de λ y los rangos de R donde el caos
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Tabla 2: Puntos de Intersección con λ = 0

Mapeo Valor de R en λ=0

Seno 0.010000
Seno 2.716000
Seno 2.862900
Seno 2.865100
Seno 2.953000

Loǵıstico 0.000800
Loǵıstico 3.569832
Loǵıstico 3.572715
Loǵıstico 3.572800
Loǵıstico 3.577516

es más intenso pueden variar, pero es visiblemente mayor en el mapeo de la función seno
cuando R esta en [3.5,4].

4.4. Análisis Espectral (Espectrogramas)

El análisis espectral nos permite examinar las componentes de frecuencia presentes en las
series temporales de los mapeos. Se presentan espectrogramas para un régimen periódico y
uno caótico en cada mapeo.

(a) Mapeo Seno (R=1.6, Periódico) (b) Mapeo Seno (R=6.9, Caótico)

Figura 6: Densidad Espectral de Potencia para el Mapeo Seno en reǵımenes Periódico y
Caótico.

Ambos mapeos muestran picos de frecuencia discretos, indicando el periodo del ciclo. La
ubicación de estos picos revela la frecuencia fundamental del ciclo. En contraste, los espectros
se vuelven continuos y ruidosos, sin picos dominantes claros, lo que es caracteŕıstico de las
dinámicas caóticas. La distribución de las frecuencias puede variar entre los dos mapeos.

4.5. Análisis Estad́ıstico (Histogramas y Momentos)

Se examina la distribución de frecuencia de los valores de xn+1 en el atractor y se calculan
sus momentos estad́ısticos clave.

El cuadro 3 presenta los momentos estad́ısticos (media, varianza, asimetŕıa, curtosis) para
los reǵımenes seleccionados de cada mapeo.
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(a) Mapeo Loǵıstico (R=3.2, Periódico) (b) Mapeo Loǵıstico (R=3.9, Caótico)

Figura 7: Densidad Espectral de Potencia para la Ecuación Loǵıstica en reǵımenes
Periódico y Caótico.

(a) Mapeo Seno (R=1.6, Periódico) (b) Mapeo Seno (R=6.9, Caótico)

Figura 8: Histogramas de Frecuencia para el Mapeo Seno en reǵımenes Periódico y Caótico.

(a) Mapeo Loǵıstico (R=3.2, Periódico) (b) Mapeo Loǵıstico (R=3.9, Caótico)

Figura 9: Histogramas de Frecuencia para la Ecuación Loǵıstica en reǵımenes Periódico y
Caótico.

Tabla 3: Momentos Estad́ısticos de las Trayectorias en Reǵımenes Periódicos y Caóticos

Mapeo Régimen Media Varianza Asimetŕıa Curtosis

Seno Periódico (R=1.6) 0.99959 0.0 0.0 0.0
Seno Caótico (R=6.9) 0.00618 0.41936 -0.01345 -1.35024

Loǵıstico Periódico (R=3.2) 0.65625 0.02050 -1.18153 -2.0004
Loǵıstico Caótico (R=3.9) 0.59430 0.08872 -0.19947 -1.40748
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El análisis de los histogramas y los momentos estad́ısticos proporciona una caracterización
detallada de la distribución de las trayectorias en los atractores de los mapeos seno y loǵıstico,
tanto en reǵımenes periódicos como caóticos.

Para el mapeo seno en el régimen periódico (R=1.6) el histograma para R = 1.6 muestra
una única barra densa y aguda centrada en x ≈ 1.0, lo que indica que el sistema converge
a un punto fijo estable. Las estad́ısticas corroboran esta observación: la media de (0.9996)
confirma la ubicación del punto fijo. La varianza nula (0.0) denota la ausencia total de
dispersión, con todos los puntos concentrados en un único valor. La asimetŕıa (0.0) y la
curtosis (0.0) nulas reflejan la perfecta simetŕıa y la naturaleza puntual de la distribución.
Se deduce que el atractor es un simple punto fijo. En el régimen caótico (R=6.9) el histograma
revela una distribución continua de x a lo largo del intervalo [−1.0, 1.0], con una notable
concentración de densidad de probabilidad cerca de los extremos (aproximadamente x =
−1.0 y x = 1.0) y una densidad menor en la región central (cerca de x = 0). En cuanto a las
estad́ısticas, la media cercana a cero (0.006) sugiere una simetŕıa aproximada del atractor
caótico alrededor del origen. La varianza significativamente mayor (0.419) confirma una alta
dispersión de los puntos a lo largo del atractor. La asimetŕıa cercana a cero (-0.013) refuerza
la idea de una distribución casi simétrica. Finalmente, la curtosis negativa (-1.350) indica
una distribución plana (platicúrtica), con menos concentración en el centro y colas más
ligeras que una distribución normal, consistente con la propagación de valores a lo largo del
rango [−1, 1]. Se deduce que el atractor es un atractor extraño que ocupa de manera densa
el intervalo [−1.0, 1.0], presentando una distribución caracteŕıstica no uniforme.

Para el mapeo loǵıstico en el régimen periódico (R=3.2)el histograma muestra dos barras
discretas y densas, indicando que la trayectoria alterna entre dos valores espećıficos (x ≈ 0.51
y x ≈ 0.79). Las estad́ısticas complementan esta visualización: la media (0.656) representa el
valor promedio de los dos puntos del ciclo. La varianza pequeña pero no nula (0.020) refleja
la dispersión entre estos dos puntos discretos. La asimetŕıa negativa considerable (-1.182)
y la curtosis marcadamente negativa (-2.000) son caracteŕısticas de una distribución com-
puesta por pocos puntos discretos, inherentemente plana y sesgada al compararse con una
distribución continua. El atractor es un ciclo de peŕıodo 2. En el régimen caótico (R=3.9)
el histograma revela una distribución continua con estructuras de bandas y brechas (valles),
donde ciertas regiones de x son visitadas con mayor frecuencia y otras son evitadas. En
términos de estad́ısticas, la media (0.594) es el promedio de los valores visitados en el atrac-
tor. La varianza (0.089) es significativamente mayor que en el régimen periódico, indicando
una mayor dispersión de la trayectoria en el caos. La asimetŕıa levemente negativa (-0.199)
sugiere una ligera inclinación de la distribución hacia valores más bajos. La curtosis negativa
(-1.407) confirma que la distribución es plana (platicúrtica), reflejando la dispersión de la
densidad a través de las bandas caóticas y la ausencia de un pico central prominente. Se
deduce que el atractor es un atractor extraño compuesto por múltiples bandas caóticas, que
aún no llenan completamente el espacio de fase, dejando brechas.

La transición de orden a caos se refleja consistentemente en el aumento significativo de la
varianza, lo que demuestra la mayor dispersión de los atractores caóticos en comparación
con los puntos fijos o ciclos periódicos.

Las formas de los atractores caóticos son distintivas para cada mapeo. El mapeo seno caótico
tiende a una distribución más simétrica y globalmente extendida en [−1, 1] con densidad
concentrada en los extremos. En contraste, el mapeo loǵıstico caótico en R = 3.9 revela una
estructura de bandas discretas con brechas, lo que se cuantifica por sus valores espećıficos de
asimetŕıa y curtosis. Estos momentos estad́ısticos actúan como huellas dactilares numéricas,
caracterizando de forma concisa la compleja geometŕıa y distribución de los atractores. Se
hicieron otras simulaciones para valores distintos de R con regimen caótico, obteniendo
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distribuciones continuas que se concentra mayormente a los extremos, es decir exponen un
comportamiento similar pero con valores diferentes para el promedio y la varianza, seŕıa
interesante analizar si la diferencia entre medias y varianzas es significativa, para lo cual se
requiere un estudio estad́ıstico inferencial más profundo.

5. Conclusiones

La exploración del mapeo seno confirma que la cascada de duplicación de peŕıodo y el
comportamiento caótico no son exclusivos de la ecuación loǵıstica, sino propiedades más
generales de los sistemas dinámicos no lineales unimodales. Aunque ambos sistemas exhiben
caos, la naturaleza de sus atractores y las regiones de estabilidad/caos en el espacio de
parámetros R son distintivas. El exponente de Lyapunov provee una validación cuantitativa
de las observaciones visuales del diagrama de bifurcación, permitiendo una comprensión más
profunda de la dinámica.

El análisis espectral corrobora la presencia de picos discretos en el comportamiento periódico
y un espectro continuo en el caos, diferenciando claramente estos reǵımenes. Por otro lado,
los histogramas y los momentos estad́ısticos ofrecen una caracterización detallada de la
distribución espacial de los atractores, revelando sutiles diferencias en la textura y la forma
de los estados caóticos entre el mapeo seno y el loǵıstico.

Continuar explorando las propiedades de universalidad, como la constante de Feigenbaum,
para el mapeo seno requeriŕıa métodos numéricos más sofisticados para la detección precisa
de los puntos de bifurcación, aśı también, un estudio estad́ıstico más profundo de la distri-
bución de las frecuencias de los atractores caóticos, la diferencia de medias y varianzas para
valores diferentes de R en los regimenes caóticos, análisis de convergencias y estimación de
momentos seŕıa el siguiente paso para caracterizar la aleatoriedad aparente en un sistema
caótico-determinista.
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