COMPORTAMIENTO DE LAS RAICES DEL POLINOMIO DE TERCER GRADO

Edgar Osejo Rosero

INTRODUCCION

El objeto de este trabajo es encontrar condiciones que caractericen el comportamiento de las raíces de un polinomio de tercer grado, pero a diferencia del tratamiento
algebraico del problema utilizaremos conceptos y resultados elementales del cálculo
diferencial. De paso mostraremos como es posible un problema, en principio pura y
tipicamente algebraico, resolverlo acudiendo a un círculo de ideas aparentemente
ajeno a la esencia misma del problema.

1. Planteamiento del problema

Sea el polinomio

$$b(X) = X_2 + VX_3 + BX + C$$

A,B y C reales. Se sabe que P(X) tiene tres raíces: X_0 , X_1 , X_2 una de las cuales X_0 es necesariamente real, quedando abierta la posibilidad de que las otras dos raíces o bien sean reales o complejas conjugadas.

El problema consiste en determinar cuando estas posibilidades y sus variaciones se realizan.

2. Solución algebraica

El problema planteado tiene una solución algebraica, que en líneas generales es la siguiente (ver [1]). En primer lugar se demuestra que el polinomio $P(X) = X^3 + AX^2 + BX + C$ mediante la transformación

$$\chi = \gamma - \frac{A}{3} \tag{1}$$

se convierte en

$$Q(Y) = Y^3 + pY + q \tag{2}$$

o sea un polinomio que no contiene el término cuadrado. En seguida para la ecuación

$$Q(Y) = 0 \tag{3}$$

de la solución mediante de la fórmula de Cardano, cuya utilidad práctica es mínima, se deduce que la determinación del tipo de raíces está ligada al comportamiento de la expresión:

$$D = -4p^3 - 27q^2 = -108(\frac{q^2}{4} + \frac{p^3}{3})$$
 (4)

llamado discriminante de la ecuación (2). Así:

- 1) Si D < 0, la ecuación (3) tiene una raíz real y dos complejas conjugadas
- Si B = 0, la ecuación tiene tres raíces reales, dos de las cuales son iguales entre si.
- Si D > 0, la ecuación tiene tres raices reales diferentes.

3. Solución con ayuda del cálculo

Desde el punto de vista del cálculo

es una función que tiene derivadas continuas de todos los órdenes en R y tal que

$$\lim_{x\to+\infty}P(X)=+s \qquad y \qquad \lim_{x\to-\infty}P(X)=-s$$

hecho este último que garantiza lo que del álgebra es ya conocido: que P(X) time cuando menos una raiz real X_0 . Así que $P(X_0) = 0$.

Nuestro análisis del problema está ligado al comportamiento de los puntos estacionarios de P(X). Como es sabido (ver [2]), los puntos estacionarios de P(X) son las soluciones de la ecuación:

$$P'(X) = 3 X^2 + 2AX + B = 0$$

Que se resuelve fácilmente. En efecto:

$$I_{3} = \frac{-A + \sqrt{A^{2} - 3B}}{3}$$
 y $I_{2} = \frac{-A - \sqrt{A^{2} - 3B}}{3}$ (5)

son los puntos estacionarios de P(X).

Se presentan los siguientes casos:

a)
$$A^2 - 3B = 0$$
 (6) de (5) se tiene

$$\chi_1 = \chi_2 = -\frac{4}{3}$$

y de (6)

$$B = \frac{2}{\theta_3}$$

asi que

$$P'(X) = 3X^{2} + 2AX + A^{2}/3$$

$$= 1/3(3X + A)^{2}$$

$$= 1/3(3X + A)^{2}$$

de donde,

$$P^*(X) = 2(3X + A)$$
 y $P^*(X_1) = 0$

lo que significa que I, es punto de inflexión.

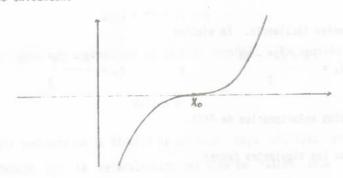
Además,

o sea que P(X) es creciente y tiene por tanto una sola raiz real X.

Tenemos aqui dos subcasos:

a1)
$$\chi_1 = \chi_2 = \chi_0 = -A/3$$

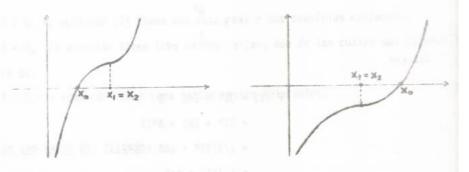
lo que corresponde al caso de una raiz real triple que es evidentemente punto de inflexión.



Observemos en este caso que

$$P(X_1).P(X_2) = 0$$

corresponde al caso de una raíz real y dos complejas conjugadas.



Observenos en este caso que

$$P(X_1).P(X_2) = P(X_1)^2 > 0$$

(8)

En este caso se tiene que X₁ y X₂ son reales diferentes y además

$$P^*(X) = 6X + 2A$$

de donde,

$$P^{*}(X_{A}) = 6 \left| \frac{-A + \sqrt{A^{2} - 3B}}{3} \right| + 2A = 2 \sqrt{A^{2} - 3B}$$

$$P^{\alpha}(X_2) = 6 \left| \frac{-A - \sqrt{A^2 - 3B}}{3} \right| + 2A = -2 \sqrt{A^2 - 3B} < 0$$

correspondiendo X1 y X2 a minimo y máximo relativos de P(X) respectivamente.

Se presentan los siguientes subcasos:

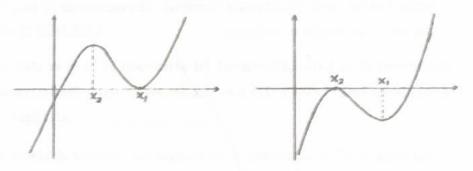
b1) $P(I_1).P(I_2) = 0$

de donde,

$$P(X_1) = 0 \quad 6 \quad P(X_2) = 0$$

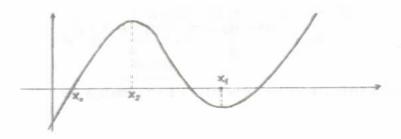
Supongamos que $P(X_1) = 0$, puesto que $P'(X_1) = 0$ y $P''(X_1) \neq 0$, X_1 es raíz doble. Si además $P(X_2) = 0$ se tendría que X_2 también es raíz doble, lo que es imposible puesto que estariamos ante cuatro raíces; así que $P(X_2) \neq 0$.

Similarmente, si $P(X_2) = 0$ se tendría $P(X_2) \neq 0$ y este caso corresponde a una raiz real doble y una simple.



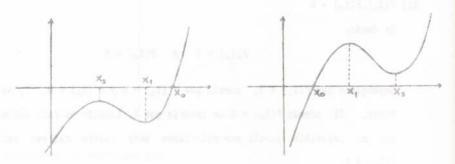
b2) P(I1).P(I2) < 0

Este caso significa que el máximo relativo de la función $P(X_2) > 0$ y el minimo relativo $P(X_3) < 0$ y corresponde al caso de tres raíces reales diferentes.



b3) P(X₁).P(X₂) > 0

Este caso significa que $P(X_1) > 0$ y $P(X_2) > 0$ ó $P(X_1) < 0$ y $P(X_2) < 0$ o sea que el máximo y el minimo relativos están en el mismo semiplano superior o inferior, y corresponde al caso de una raíz real y dos complejas conjugadas.



c) A2 - 3B (0

En este caso X_1 y X_2 son complejas conjugadas y P(X) no tiene puntos estacionarios y es por tanto estrictamente creciente; correspondiendo al caso de una raiz real y dos complejas conjugadas.

Observemos en este caso que X2 = X1

$$\mathbb{P}(\mathbb{X}_{\Delta}).\mathbb{P}(\mathbb{X}_{D}) = \mathbb{P}(\mathbb{X}_{\Delta}).\mathbb{P}(\overline{\mathbb{X}_{\Delta}}) = \mathbb{P}(\mathbb{X}_{\Delta}).\mathbb{P}(\mathbb{X}_{\Delta}) = \|\mathbb{P}(\mathbb{X}_{\Delta})\|^{2} \geq 0$$

De otra parte se establece que:

$$P(X_{\Delta}) = \frac{2A^{3} - 9AB + 27C}{27} + 2 \frac{3B - A^{2}}{27} \sqrt{3B - A^{2}} i$$

de donde $ImP(X_k) \neq 0$ y por tanto $P(X_k) \neq 0$ y se concluye que

o lo que es lo mismo

- 4. En resumen se ha establecido lo siguiente:
 - Si X₁ y X₂ son los puntos estacionarios de P(X) = X³ + AX² + BX + C, entonces
 - Si P(X₂).P(X₂) > 0, el polinomio tiene una raiz real y dos complejas conjugadas.
 - 2) Si $P(X_1).P(X_2) = 0$ y $A^2 3B = 0$, el polinomio tiene una raíz real triple.
 - 3) Si $P(X_1).P(X_2) = 0$ y $A^2 3B > 0$, el polinomio tiene una raíz real doble y otra también real simple.
 - 4) Si P(X1).P(X2) < 0, el polinomio tiene tres raices reales diferentes.

5. Cálculo de P(X1).P(X2)

De lo visto es clara la importancia del producto P(X₁).P(X₂) en la determinación del comportamiento de las raices del polinomio P(X) y vale la pena calcularlo de manera explícita.

Con el objeto de simplicar los cálculos de la observación de (5) se tiene que:

$$X_{1}, X_{2} = \frac{-A + \sqrt{A^{2} - 3B}}{3} \cdot \frac{-A - \sqrt{A^{2} - 3B}}{3} = \frac{B}{3}$$

$$X_{1} + X_{2} = -\frac{2A}{3}$$

$$\chi_{\pm}^{2} + \chi_{\pm}^{2} = \left(\frac{-A + \sqrt{A^{2} - 3B}}{3} \right)^{2} + \left(\frac{-A - \sqrt{A^{2} - 3B}}{3} \right)^{2}$$

$$= \frac{4A - 6B}{9}$$

$$\chi_{\Delta}^{3} + \chi_{Z}^{3} = (\chi_{\Delta} + \chi_{Z})(\chi_{\Delta}^{2} + \chi_{Z}^{2} - \chi_{\Delta}\chi_{Z})$$

$$= \frac{2A}{3} \left(\frac{9A - 6B}{9} - \frac{B}{3} \right)$$

$$= \frac{18AB - 3A^{2}}{27}$$

$$P(X_{1}).P(X_{2}) = (X_{1}^{3} + AX_{1}^{2} + BX_{1})(X_{2}^{3} + AX_{2}^{2} + BX_{2} + C)$$

$$= (X_{1}X_{2})^{3} + A(X_{1}X_{2})^{2}(X_{1} + X_{2} + A) + BX_{1}X_{2}(X_{1}^{2} + X_{2}^{2} + A(X_{1} + X_{2}) + B$$

$$+ C(X_{1}^{3} + X_{2}^{3}) + AC(X_{1}^{2} + X_{2}^{2}) + BC(X_{1} + X_{2}) + C^{2}$$

$$= \frac{B^{3}}{27} + A.\frac{B^{3}}{9}(-\frac{2A}{3} + A) + B.\frac{B}{3}(\frac{4A - 6B}{9} + A) + A(-\frac{2A}{3}) + B)$$

$$= + C(\frac{1BAB - 8A^{2}}{27}) + AC(\frac{4A - 6B}{9}) + BC(-\frac{2A}{3}) + C^{2}$$

$$= \frac{4B^{3}}{27} - \frac{5A^{2}B^{2}}{27} + \frac{4AB^{2}}{27} + \frac{4A^{2}C}{3} + C^{2}$$

En particular: cuándo el polinomio $Q(Y) = Y^3 + pY + q$ tiene dos raíces complejas conjugadas y una real?

Para responder observemos que A = 0, B = p, C = q y de acuerdo con el punto (5) tendremos que la respuesta es

$$\frac{4p^3}{27} - q^2 > 0$$

o lo que es lo mismo

$$\frac{p^3}{27} - \frac{q^2}{4} > 0$$

que es equivalente a la condición D < O dada en el punto 2.

BIBLIOGRAFIA

- [1]. KUROSCH A. G. Curso de Algebra Superior, ed. Mir, 1968
- [2]. PISKUMOV, N., Cálculo Diferencial e Integral, sexta edición, ed. Mir, 1977