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Abstract. In this work we formulate fourth mathematical models trying to describe basic aspects
into the dynamics of theMycobacterium tuberculosis (Mtb) infection at different stages. The purpose
of this study is to evaluate the impact of the response of T cells and macrophages in the control of
Mtb.
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Resumen. En este trabajo se formulan cuatro modelos matemáticos que intentan describir aspectos
básicos de la dinámica de la infección con el Micobacterium tuberculosis (Mtb) en diferentes etapas.
El propósito de este estudio es evaluar el impacto de la respuesta de las células T y los macrófagos
en el control del Mtb.

Palabras Clave. Modelo matemático, Tuberculosis, Estabilidad, Inmunoloǵıa, soluciones de equi-
librio

Introduction

Tuberculosis (TB) is an infectious disease whose etiological agent is Mycobacterium tubercu-
losis (Mtb). The World Health Organization (WHO) reports 9.2 million new cases and 1.7
million death each year [1, 2]. However, only 10% of infected individuals with Mtb develop
the disease in their lifetime [3]. This indicates that in most cases the host immune system
is able to control replication of the pathogen. The Mtb bacteria may affect different tissues,
but usually develop pulmonary TB. After the entrance of the bacilli into the lung, phagocy-
tosis of the bacteria by alveolar macrophages takes place. Cell mediated immune response
develops within 2 to 6 weeks, this leads to the activation and recruitment of other immune
cell populations, such as CD4+T or CD8+T lymphocytes. These cells secrete cytokines that
help to kill the infected macrophages [4]. In most cases the initial infection progresses to a
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latent form which can be maintained for the lifetime of the host with no clinical symptoms.
The reactivation of the latent infection can be due to aging, malnutrition, infection with
HIV, and other factors.
The immune response that occurs after the first exposure to Mtb is multifaceted and com-
plex. Animal models have been extensively used to explain the mechanisms involved in this
response, however, these models have limitations, since cellular response may vary between
species [5].
Mathematical models have been applied to understand the celular immunology of TB.
Among them we have R. Antia et. al. [6], D. Kirschner [7, 8], Magombedze et al. [9, 10],
E. Ibargen-Mondragn et al. [11, 12, 13, 14, 15, 16, 17, 18, 19], Alavez et al. [20], Baloni
et al [21], Shi et al. [22], Bru and Cardona [23], Yang [24], Guirado and Schlesinger [25],
Carvalho [26], Goutelle et al. [27], E. Pienaar and M. Lerm [28]
In this paper we are interested in modeling the interaction of immune system cells more
relevant in the immunology of TB (macrophages and T cells) together with the Mtb at
different stages of infection. To this end, we formulate and analyze a sequence of four
mathematical models. The first model describes the interaction of macrophages and bacteria
at the beginning of the infection. The second model describes the interaction of macrophages
and bacteria in the context of innate immunology of TB. The third model describes the
interaction of macrophages, T cells and bacteria. In this case the cytotoxic response of T
cells is stimulated by the inability of macrophages controlling the infection progress. The
fourth model is a combination between the previous two in which both macrophages and
T cells have the capacity to fight against the bacteria. This model is found within the cell
mediated immunology of TB.

1 The basic model of Mtb infection dynamics

Infection with Mycobacterium tuberculosis (Mtb) follows a relatively well-defined process.
The infectious bacilli are inhaled as droplets from the atmosphere. In the lung the bacteria
are phagocytosed by alveolar macrophages and induce a localized proinflammatory response
that leads to the recruitment of mononuclear cells from neighboring blood vessels [29].
Since macrophages are the first targets of the bacteria we formulate a mathematical model
about Mtb infection dynamics considering the following population; uninfected macro-
phages, infected macrophages, Mtb bacteria which are denoted by x, y, and b, respectively.
We assume that uninfected macrophages reproduce at constant rate λ, and die at a per
capita constant rate µ. Uninfected macrophages become infected at a rate proportional to
the product of x and b, with constant of proportionality β. Infected macrophage die at per
capita constant rate ν, where ν ≥ µ. Mtb bacteria multiply inside infected macrophages up
to a limit at which the macrophage bursts, and releases bacteria. For this reason, we assume
that infected macrophages produce Mtb bacteria at a rate proportional to the population,
ρy. Infected macrophages die at a rate νy and Mtb bacteria are removed from the system
at a rate γb. The above assumptions lead to the following system of nonlinear differential
equations

x′ = λ− µx− βxb

y′ = βxb − νy

b′ = ρy − γb. (1.1)

The set of biological interest is given by

Ω =
{

(x, y, b) ∈ (R+
0 )

3 : 0 ≤ x+ y ≤ λ/µ, 0 ≤ b ≤ λρ/γµ
}

. (1.2)

The following lemma ensures that the system (1.1) has biological sense, that is, all solutions
starting in Ω remain there for all t ≥ 0.
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Lemma 1.1. The set Ω defined in (1.2) is positively invariant for the solutions of the system
(1.1).

Proof. We begin adding the first two equations of (1.1) and using the fact that ν ≥ µ we
obtain

d

dt
(x+ y) + µ(x+ y) ≤ λ. (1.3)

From (1.3) we see that

x(t) + y(t) ≤
λ

µ
+

(

−
λ

µ
+ x0 + y0

)

e−µU t,

where x0 + y0 ≤ λ/µ, which implies x(t) + y(t) ≤ λ/µ for all t ≥ 0. Similarly it is proved
that 0 ≤ b(t) ≤ λρ/γµ. On the other hand, it can be easily verified that the vector field
defined by (1.1) points to the interior of Ω. Therefore the solutions starting in Ω remain
there for all t ≥ 0. �X

A similar model was formulated by M. Nowak and R. May [30] for virus dynamics. This is
not a coincidence because although bacteria and viruses are very different microorganisms,
in the infection process Mtb behaves like a virus. Nowak’s model has been widely studied
and used. Its qualitative analysis was made by Li and Muldowney [31], Leenheer and Smith
[32], Korobeinikov [33]. The qualitative analysis of the model (1.1) is given in terms of basic
reproductive number R0 which is

R0 =
βλρ

µνγ
. (1.4)

This number is interpreted as the number of secondary infections that arises from a macrophage
during its lifetime when all other macrophages are uninfected. The results of existence and
stability of equilibrim solutions are summarized in the following propositions.

Proposition 1.2. If R0 ≤ 1, then the infection-free equilibrium E0 = (λ/µ, 0, 0) is the only
equilibrium of system (1.1). If R0 > 1, in addition to E0 there exists an endemic equilibrium
E1 given by

E1 =

(

νγ

βρ
, (R0 − 1)

µγ

βρ
, (R0 − 1)

µ

β

)

.

Proposition 1.3. If R0 ≤ 1, the infection-free equilibrium E0 is globally asymptotically
stable, and the infection cannot persist. If R0 > 1, the endemic equilibrium E1 is globally
asymptotically stable, and the infections persists indefinitely.

For the proofs of above propositions see [31] or [32].

2 The basic model of Mtb infection dynamics with ma-

crophages response

The innate immune system acts at the early phase as the front line for host defense against
Mtb infection. At this stage, different immune system cells such as neutrophils, mast cells,
macrophages, dendritic cells and natural killer trying to stop the progression of bacteria
through different effector mechanisms. The innate immune response against Mtb infection
is so complex that at present there are still many questions about it. However, the scientific
community agrees that the main effector cells in this response are the macrophages. For
this reason, in this section we will explore the innate immune response induced by effector
mechanisms of macrophages.
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As mentioned earlier, in the lung the bacteria are phagocytosed by alveolar macrophages that
often destroy them. At this stage, the Mtb destruction depends on the intrinsic microbicidal
capacity of host phagocytes and virulence factors of the ingested Mtb bacteria [34]. When
bacteria evades their elimination, they multiply inside an infected macrophage up to a limit
at which the macrophage bursts, and releases bacteria. When this happens, macrophages
induce a localized proinflammatory response that leads to the recruitment of mononuclear
cells from neighboring blood vessels.
In this section we want to make a model on innate response against Mtb. To this end, the
Mtb bacteria replicates according to the basic model of Mtb infection dynamics (1.1). The
innate response or macrophages response kill bacteria at proportional rate to the product
of x and b with constant of proportionality ψ. The innate response rate ψ including the
effects of rate at which uninfected macrophages eliminate bacteria, and effector mechanisms
involved in the killing of mycobacteria such that apoptosis. Under the previously described
assumptions, we obtain the following mathematical model

x′ = λ− µx− βxb

y′ = βxb − νy

b′ = ρy − ψxb − γb. (2.1)

For this system we have that the following invariance result.

Lemma 2.1. The set Ω defined in (1.2) is positively invariant for the solutions of the system
(2.1).

Proof. Similarly to proof of Lemma 1.1. �X

2.1 Equilibrium solutions

In this section we will characterize the equilibrium solutions of the system (2.1). Before
infection, the system is at the equilibrium state x = λ/µ, y = 0, and b = 0. Suppose
that bacteria enter to the organism. The infection progression will depend of the basic
reproductive number, R1, defined by

R1 =
βρλ

µν (γ + γ′)
, (2.2)

where γ′ = ψλ/µ is the rate at which bacteria are eliminated by innate response at its equi-
librium level. The following proposition summarizes the existence results of the equilibria.

Proposition 2.2. If R1 ≤ 1, then P0 = (λ/µ, 0, 0) is the only equilibrium in Ω. If R1 > 1,
in addition to P0, there exists an endemic equilibrium P1.

Proof. Equilibrium solutions of (2.1) are given by solutions of the following algebraic system

λ− µx− βxb = 0

βxb− νy = 0

ρy − ψxb− γb = 0, (2.3)

which are infection-free equilibrium P0 = (λ/µ, 0, 0) and endemic equilibrium P1 = (x1, y1, b1)
where

x1 =
λ

µ+ βb1

y1 =
βλb1

ν(µ+ βb1)

b1 =
(µγ + ψλ)(R1 − 1)

γβ
.
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2.2 Stability of equilibrium solutions

In this section we analyze the stability of equilibria. We begin by analyzing the stability of
the infection-free equilibrium.

Proposition 2.3. If R1 < 1, then P0 is locally asymptotically stable, and unstable when
R1 > 1,.

Proof. To analyze the local stability of the equilibrium P0 we will use the Jacobian of the
system (2.1) which is given by

J =





− (µ+ βb) 0 −βx
βb −ν βx
−ψb ρ −(ψx+ γ)



 . (2.4)

The eigenvalues of the Jacobian (2.4) evaluated at P0 are given by −µ, and the solutions of
the quadratic equation

ξ2 +

(

ν + ψ
λ

µ
+ γ

)

ξ − ν

(

γ + ψ
λ

µ

)

(R1 − 1) = 0. (2.5)

From Routh-Hurwitz criteria we conclude that the roots of the equation (2.5) have negative
real part if and only if R1 < 1 (see [35]). �X

Actually, we can prove global stability of P0 when R1 ≤ 1.

Proposition 2.4. If R1 ≤ 1 then P0 is globally asymptotically stable.

Proof. The function U defined by

U = ρy + νb, (2.6)

satisfies U(P0) = 0 and U(P ) ≥ 0 for all P ∈ Ω. Since R1 ≤ 1 implies ρβ − νψ < µνγ/λ,
then its orbital derivative satisfies

U̇ = (ρβ − νψ)xb − νγb ≤
µνγ

λ
xb− νγb =

µνγ

λ
b

(

x−
λ

µ

)

≤ 0.

In consequence U̇(P ) ≤ 0 for all P ∈ Ω. From inspection of system (2.1) we can see that
the maximum invariant set contained in the set U̇ = 0 is the line y = 0, b = 0. In this set,
system (2.1) becomes

x′ = λ− µx, y′ = 0, b′ = 0.

Which implies that the solutions starting there tend to equilibrium P0 as t goes to infinity.
Therefore, applying the LaSalle-Lyapunov Theorem (see [35]) we have that P0 is globally
asymptotically stable. �X

Now, we are going to prove the stability of P1.

Proposition 2.5. If R1 > 1, then P1 is locally asymptotically stable

Proof. From equilibrium equations (2.3) we have

µ+ βb1 =
λ

x1
, ψx1 + γ =

ρy1
b1
. (2.7)
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Substituting the equations (2.7) in the Jacobian (2.4) we obtain

J(P1) =











−
λ

x1
0 −βx1

βb1 −ν βx1

−ψb1 ρ −
ρy1
b1
.











. (2.8)

The characteristic polynomial of J(P1) in (2.8) is given by

p(ξ) = ξ3 + a1ξ
2 + a2ξ + a3, (2.9)

where

a1 = ν +
ρy1
b1

+
λ

x1

a2 = ν
λ

x1
+ ν

ρy1
b1

+ γβb1

a3 = γνβb1.

The Routh-Hurwitz criterion states that the roots of the polynomial p defined in (2.9) have
negative real part if and only if ai > 0 and ∆2 = a1a2 − a3 > 0 for i = 1, 2, 3. It is clear
that ai > 0 for i = 1, 2, 3. After some simplifications we obtain

∆2 = ν

(

ν
λ

x1
+ µ

ρy1
b1

)

+

(

ν + µ
ρy1
b1

+
λ

x1

)(

ν
λ

x1
+ µ

ρy1
b1

+ γβb1

)

> 0.

Therefore, P1 is locally asymptotically stable. �X

Now, we are going to prove from direct method of Lyapunov that P1 is globally asymptoti-
cally stable when γ ≥ γ′. For this end, we use the following Lyapunov function

V = a1

[

x− x1 − x1 ln

(

x

x1

)]

+ a2

[

y − y1 − y1 ln

(

y

y1

)]

+a3

[

b− b1 − b1 ln

(

b

b1

)]

,

where a3 is a positive constant and

a1 =
γ

βx1
a3, a2 =

ρy1
βx1b1

a3. (2.10)

To prove the global stability of P1 using Lyapunov’s direct method we have to show that
V (P ) > 0 and V̇ (P ) < 0 for all P ∈ Ω. To this end, we need the results given in next
propositions.

Proposition 2.6. The orbital derivative of V is V̇ = −f where f is given by

f = a1µx1

(

w1 +
1

w1

− 2

)

+ a1βx1b1

(

w1w3 +
1

w1

− w3 − 1

)

+a2βx1b1

(

w1w3

w2

+ w2 − w1w3 − 1

)

+ a3ρy1

(

w2

w3

+ w3 − w2 − 1

)

+a3ψx
+b+(w1w3 + 1− w3 − w1), (2.11)

being w1 = x/x1, w2 = y/y1, and w3 = b/b1.
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Proof. The orbital derivative of V is given by

V̇ = a1

(

1−
x1
x

)

(λ− µx− βxb) + a2

(

1−
y1
y

)

(βxb − νy)

+a3

(

1−
b1
b

)

(ρy − ψxb− γb) (2.12)

From the equilibrium equations (2.3) we have

λ = µx1 + βx1b1, ν =
βx1b1
y1

, γ =
ρy1
b1

−
ψx1b1
b1

. (2.13)

Replacing above values of λ, ν, and γ in (2.12) we obtain

V̇ = −a1µx1

(

x

x1
+
x1
x

− 2

)

+ a1βx1b1

(

xb

x1b1
+
x1
x

−
b

b1
− 1

)

−a2βx1b1

(

xby1
x1b+y

+
y

y1
−

xb

x1b1
− 1

)

− a3ρy1

(

b1y

by1
+

b

b1
−

y

y1
− 1

)

−a3ψx1b1

(

xb

x1b1
+ 1−

b

b1
−

x

x1

)

.

In the variables w1 = x/x1, w2 = y/y1 and w3 = b/b1 we have V̇ = −f . �X

Proposition 2.7. If γ ≥ γ′, then the function f is nonnegative.

Proof. Since

a1µx1 − a3ψx1b1 =

(

γµ

β
− ψx1b1

)

a3

=

(

γµ2 + µβ(γ − γ′)b1
β(µ+ βb1)

)

a3

> 0,

implies a1µx1 > a3ψx1b1 and w1 + 1/w1 − 2 = (w1 − 1)
2
/w1 ≥ 0, then f satisfies

f ≥ a3ψx1b1

(

w1 +
1

w1

− 2

)

+ a1βx1b1

(

w1w3 +
1

w1

− w3 − 1

)

+a2βx1b1

(

w1w3

w2

+ w2 − w1w3 − 1

)

+ a3ρy1

(

w2

w3

+ w3 − w2 − 1

)

+a3ψx1b1(w1w3 + 1− w3 − w1)

= (a3ψx1b1 + a1βx1b1)

(

w1w3 +
1

w1

− w3 − 1

)

+a2βx1b1

(

w1w3

w2

+ w2 − w1w3 − 1

)

+ a3ρy1

(

w2

w3

+ w3 − w2 − 1

)

.

From next equalities

a3ψx1b1 + a1βx1b1 = a2βx1b1 = a3ρy1

we obtain the constants defined in (2.10) and the function f satisfies

f(w1, w2, w3) ≥ a3ρy1

(

w1w3

w2

+
w2

w3

+
1

w1

− 3

)

, (2.14)

Taking d1 = w1w2/w3, d2 = w2/w3, and d3 = 1/w1 in the inequality
∑n

i=1
di ≥ n

√
∏n

i=1
di,

it can be seen readily that the expression inside parenthesis of (2.14) is nonnegative, and
therefore f is nonnegative. �X
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Theorem 2.8. If R1 > 1 and γ ≥ γ′ then nontrivial equilibrium P1 is globally asymptotically
stable.

Proof. It is clear that V (P1) = 0 and V (P ) ≥ 0 for all P ∈ Ω. From Proposition 2.6 we
have V̇ = −f and from Proposition 2.7 we have f is nonnegative, therefore V̇ (P ) ≤ 0 for all
P ∈ Ω. Further V̇ = 0 if and only if x = x1, y = y1, and b = b1 which implies all trajectories
inside Ω approach P1 when t goes to infinity. �X

3 The basic model of Mtb infection dynamics with CTL

response

As mentioned in the introduction, Mtb targets macrophages. When macrophages fail to
harm Mtb, several T-cells populations are required for the successful control of the pathogen.
In this section we want to make a model of cytotoxic T cells (CTL) response against Mtb.
To this end, the Mtb bacteria replicates according to the basic model of Mtb dynamics (1.1).
Let us explore the effect of a CTL response, c, which provides a maximum amount of CTL
for the purpose of eliminating infected macrophages.
In the presence of bacteria and infected macrophages, the supply of specific T-cells is given
by σ (1− c/cmax) y, where σ is the recruitment rate of T cells, and cm is the maximum T
cell population level. Finally, the T-cells die at per capita rate δ.
The assumptions above lead to the following system of nonlinear differential equations

x′ = λ− µx− βxb

y′ = βxb − αyc− νy

b′ = ρy − γb

c′ = σ

(

1−
c

cm

)

y − δc. (3.1)

In this case, the set of biological interest is given by

Ω1 =
{

(x, y, b, c) ∈ (R+

0 )
4 : 0 ≤ x+ y ≤ λ/µ, 0 ≤ b ≤ λρ/γµ, 0 ≤ c ≤ λσ/δµ

}

. (3.2)

The following lemma ensures that system (3.1) has biological sense, that is, all solutions
starting in (3.2) remain there for all t ≥ 0.

Lemma 3.1. The set Ω1 defined in (3.2) is positively invariant for the solutions of the
system (3.1).

Proof. Similarly to the proof of Lemma 1.1. �X

3.1 Equilibrium Solutions

In this case, before infection, the system is at the equilibrium x = 1, y = 0, b = 0, and
c = 0. Suppose that bacteria enter to the organism. The infection progression will depend
of the basic reproductive number, R0, defined in (1.4). The following theorem summarizes
the existence results of the equilibria.

Proposition 3.2. If R0 ≤ 1, then P̄0 = (λ/µ, 0, 0, 0) is the only equilibrium in Ω. If R0 > 1,
in addition to P̄0, there exists an infected equilibrium

P2 =

(

λ

µ+ βb2
,
γ

ρ
b2, b2,

cmσγb2
γb2 + cmδρ

)

.

See [13] for proof of Proposition 3.2.
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3.2 Stability of equilibrium solutions

In this section we analyze the stability of equilibria. We begin with the stability analysis of
the infection-free equilibrium.

Proposition 3.3. For R0 < 1, P̄0 is locally asymptotically stable, and for R0 > 1, P̄0 is
unstable.

See [13] for proof of Proposition 3.3. Actually, we can prove global stability of P̄0 when
R0 ≤ 1.

Proposition 3.4. If R0 ≤ 1 then P̄0 is globally asymptotically stable.

See [13] for proof of Proposition 3.4. In the following we will prove the asymptotic stability
of P̄1 when R0 > 1. For this, we use the following Lyapunov function

V = a1

[

x− x2 − x2 ln

(

x

x2

)]

+ a2

[

y − y2 − y2 ln

(

y

y2

)]

+a3

[

b− b2 − b2 ln

(

b

b2

)]

+ a4

[

c− c2 − c2 ln

(

c

c2

)]

,

where a1 is a positive constant and

a2 = a1, a3 =
βb2x2a1
ρy2

, a4 =
αc2y2a1

σy2(1− c2/cm)
. (3.3)

As above, next results are needed for prove stability.

Proposition 3.5. The orbital derivative V̇ of V is equal to V̇ = −f where f is given by

f = a1

[

µx2

(

w1 +
1

w1

− 2

)

+ βx2b2

(

w1w3 +
1

w1

− w3 − 1

)]

+a2

[

βx2b2

(

w1w3

w2

+ w2 − w1w3 − 1

)

+ αy2c2(1 + w2w4 − w2 − w4)

]

+a3ρy2

(

w2

w3

+ w3 − w2 − 1

)

+a4σy2

(

w2

w4

+ w4 − w2 − 1

)

+ a4
σ

cm
y2c2(w2w4 + 1− w2 − w4), (3.4)

where w1 = x/x2, w2 = y/y2, w3 = b/b2 and w4 = c/c2.

See [13] for proof of Proposition 3.4.

Proposition 3.6. The function f is nonnegative.

See [13] for proof of Proposition 3.6.

Theorem 3.7. If R0 > 1 then nontrivial equilibrium E2 is globally asymptotically stable.

See [13] for proof of Theorem 3.7.

4 The basic model of Mtb infection dynamics with ma-

crophage and CTL responses

In this section we formulate a model that consider both the innate and CTL response. The
model is formulated from the macrophage response model (section 3) and the model for
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CTL response (section 4). Under the same hypotheses of the previous models we obtain the
following system of ordinary differential equation

x′ = λ− µx− βxb

y′ = βxb − αyc− νy

b′ = ρy − ψxb − γb

c′ = σ

(

1−
c

cm

)

y − δc. (4.1)

The results of existence and stability of equilibrium solutions are given in terms of the basic
reproductive number R1 define in (2.2), which are summarized in next propositions.

Proposition 4.1. If R0 ≤ 1, then Q1 = (λ/µ, 0, 0, 0) is the only equilibrium of the system
(4.1). If R0 > 1, in addition to Q1, there exists an infected equilibrium, Q2 = (x, y, b, c).

Proposition 4.2. If R0 ≤ 1 then Q1 is globally asymptotically stable.

Proposition 4.3. If γ′ ≤ γ then nontrivial equilibrium Q2 is globally asymptotically stable
when R1 > 1.

For the proofs of above propositions see [11].

5 Numerical solutions

To make the graphs in Figure 1 were used the following parameter values σ=0.08, cm=50000,
δ=0.33, ρ=0.12, ψ=0.0000002, γ=0.012, β=0.0000001, α=0.00002, ν=0.02, λ=1000, and
µ=0.01. For these values we obtain R0 = 5 and R1 = 1.875, which implies that the
population of bacteria can not be eliminated in any case. Figure 1 confirm the above, in
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Figure 1: Bacterial growth in all models.

the first 100 days of the infection, the innate response is more efficient than the cytotoxic
response in the control of bacteria progression. However, in the course of the time the
cytotoxic response becomes a more effective response. These results are consistent with
different reports which state that in the early stage of infection the innate response is more
relevant than the cellular response mediated by T lymphocytes. Also, we find that some
results state that the main protective response to the outcome of Mtb infection is mediated
cellular consisting of T cells and different effector mechanisms [34, 4, 3].
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6 Discussion

In this work we formulate four mathematical models that attempt to describe the dynamics
of Mycobacterium tuberculosis infection at different stages. These models consider the in-
teraction of the most relevant cell populations in the TB infection (macrophages, T cells and
bacteria). The qualitative analysis of the models is given in terms of the basic reproductive
numbers R0 and R1 given by

R0 =
βλρ

µνγ
, R1 =

βλρ

µν(γ + γ′)
, (6.1)

where γ′ = ψ
λ

µ
is the rate at which bacteria are eliminate by innate response at its equilib-

rium level. Observe that

• R0 is the basic reproductive number of the basic model (1.1) and the basic model with
cytotoxic response (3.1).

• R1 is the basic reproductive number of the basic model with innate response (2.1) and
basic model with both responses (4.1).

Since R1 ≤ R0 then the results suggest that the onset of infection, the innate response is
more efficient than the cytotoxic response. As shown in Figure 1, the best model to control
the bacterial growth is one that combines both the innate response as well as the cytotoxic
response.

Acknowledgments

E. Ibarguen-Mondragón acknowledge support from project No 182-1/11/2016 financed by
the Vicerrectoria de Investigaciones, Posgrados y Relaciones Internacionales (VIPRI) de la
Universidad de Nariño (UDENAR).

References

[1] Global tuberculosis control: surveillance, planning, financing: WHO report 2008.
WHO/HTM/TB/2008.393. 31

[2] Palomino-Leo-Ritacco, Tuberculosis 2007, From basic science to patient care. Tubercu-
losisTextbook.com, 2007, first edition. 31

[3] J. Chan,J. Flynn, The immunological aspects of latency in tuberculosis, Clin. Immunol.
2004;110(1): 2-12. 31, 40

[4] A. M. Gallegos, E. G. Pamer, M. S. Glickman, Delayed protection by ESAT-6-specific
effector CD4+ T cells after airborne M. tuberculosis infection. J. Exp. Med. 2008 Sep
29;205(10):2359-68. 31, 40

[5] M. Tsai, S. Chakravarty, G. Zhu, J. Xu, K. Tanaka, C. Koch, J. Tufariello, J. Flynn and
J. Chan, Characterization of the tuberculous granuloma in murine and human lungs:
cellular composition and relative tissue oxygen tension, Cell Microbiology, 8 (2006),
218–232. 32

[6] R. Antia, J. Koella, V. Perrot, Model of the Whitin-host dynamics of persistent my-
cobacterial infections. Proc. R. Soc. Lond. B. 263(1996) 257-263. 32

41



[7] D. Kirschner, Dynamics of Co-infection with M. tuberculosis and HIV-1. Theor Popul
Biol. 55(1999) 94-109. 32

[8] DE. Kirschner, D. Sud, C. Bigbee, JL. Flynn, Contribution of CD8+T Cells to Con-
trol of Mycobacterium tuberculosis Infection. The Journal of Immunology. 2006 April
1;176(7)1: 4296-4314. 32

[9] G. Magombedze, W. Garira, E. Mwenje, Modellingthe human immune response mecha-
nisms to mycobacterium tuberculosis infection in the lungs, J. Mathematical Biosciences
and engineering, 2006, 3(3):661-682. 32

[10] G. Magombedze, N. Mulder, Understanding TB latency using computational and dy-
namic modelling procedures,Infection, Genetics and Evolution, 2013(13): 267283. 32
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20(1):5573. 32
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