Construcción, con herramientas no convencionales, de un triángulo isósceles dado el perímetro y la altura relativa al lado desigual.

Autores/as

  • Oscar Fernando Soto Ágreda
  • Saulo Mosquera López
  • Libardo Manuel Jácome

Palabras clave:

Problema, triángulo isósceles, elipse, hipérbola, parábola, mediatriz, circunferencia, recta

Resumen

Los problemas de construcciones geométricas con regla y compás han sido fuente de trabajo e inspiración para los matemáticos a través de los tiempos, aunque también es posible utilizar otra clase de instrumentos ver, por ejemplo, Boyer, 1968. En este trabajo se analiza el siguiente interrogante: ¿Es posible construir un triángulo isósceles, dado su perímetro y la altura relativa al lado desigual, con herramientas no convencionales, es decir, sin el uso de la regla y el compás? La respuesta es positiva y en su solución se utilizan curvas tales como, la parábola, la elipse y la hipérbola, aunque también es posible utilizar otro tipo de curvas. Adicionalmente, cada una de las construcciones se justifica desde el punto de vista teórico.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2024-08-29

Cómo citar

Soto Ágreda, O. F., Mosquera López, S., & Jácome, L. M. . (2024). Construcción, con herramientas no convencionales, de un triángulo isósceles dado el perímetro y la altura relativa al lado desigual. Revista SIGMA, 20(1), 30–39. Recuperado a partir de https://revistas.udenar.edu.co/index.php/rsigma/article/view/8949

Número

Sección

Matemáticas