English english
Main Article Content
Abstract
The magnetic moment of the muon deviates by more than 3σ (three standard deviations) from the prediction
of the standard model of particles and therefore it is possible that this anomaly is a consequence of
physics beyond the standard model. In this paper we calculate radiative corrections of an exotic scalar
field to the anomalous magnetic moment of an arbitrary lepton. We use this result to calculate the regions
allowed in the parameter space at 1σ with respect to the experimental result.
Downloads
Article Details
References
Prateek Agrawal, Zackaria Chacko, and Christopher B. Verhaaren. Leptophilic Dark Matter and the Anomalous Magnetic Moment of the
Muon. JHEP, 08:147, 2014.
M. Adeel Ajaib, Ilia Gogoladze, Qaisar Shafi, and Cem Salih ¨Un. Split sfermion families, Yukawa unification and muon g − 2. JHEP,
:079, 2014.
Usama Al-Binni et al. Project X: Physics Opportunities. 6 2013.
Richard L. Arnowitt, Bhaskar Dutta, and B. Hu. Dark matter, muon g-2 and other SUSY constraints. In 4th International Conference
on Physics Beyond the Standard Model: Beyond the Desert (BEYOND 03), pages 25–41, 10 2003.
Christopher Aubin, Thomas Blum, Maarten Golterman, Kim Maltman, and Santiago Peris. The muon anomalous magnetic moment, a
view from the lattice. Int. J. Mod. Phys. Conf. Ser., 35:1460418, 2014.
Christopher Aubin, Thomas Blum, Maarten Golterman, and Santiago Peris. Model-independent parametrization of the hadronic vacuum
polarization and g-2 for the muon on the lattice. Phys. Rev. D, 86:054509, 2012.
Christopher Aubin, Thomas Blum, Maarten Golterman, and Santiago Peris. Hadronic vacuum polarization with twisted boundary
conditions. Phys. Rev. D, 88(7):074505, 2013.
J. Beringer et al. Review of Particle Physics (RPP). Phys. Rev. D, 86:010001, 2012.
Hooman Davoudiasl, Hye-Sung Lee, and William J. Marciano. Muon g-2, rare kaon decays, and parity violation from dark bosons. Phys.
Rev. D, 89(9):095006, 2014.
C. A. de S. Pires and P. S. Rodrigues da Silva. Scalar scenarios contributing to (g-2)(muon) with enhanced Yukawa couplings. Phys.
Rev. D, 64:117701, 2001.
Motoi Endo, Koichi Hamaguchi, Teppei Kitahara, and Takahiro Yoshinaga. Probing Bino contribution to muon g−2. JHEP, 11:013, 2013.
Lisa L. Everett, Gordon L. Kane, Stefano Rigolin, and Lian-Tao Wang. Implications of muon g-2 for supersymmetry and for discovering
superpartners directly. Phys. Rev. Lett., 86:3484–3487, 2001.
Ayres Freitas, Joseph Lykken, Stefan Kell, and Susanne Westhoff. Testing the Muon g-2 Anomaly at the LHC. JHEP, 05:145, 2014.
[Erratum: JHEP 09, 155 (2014)].
Maarten Golterman, Kim Maltman, and Santiago Peris. Tests of hadronic vacuum polarization fits for the muon anomalous magnetic
moment. PoS, LATTICE2013:300, 2014.
Masahiro Ibe, Shigeki Matsumoto, Tsutomu T. Yanagida, and Norimi Yokozaki. Heavy Squarks and Light Sleptons in Gauge Mediation
˜From the viewpoint of 125 GeV Higgs Boson and Muon g-2˜. JHEP, 03:078, 2013.
Fred Jegerlehner. Application of Chiral Resonance Lagrangian Theories to the Muon g−2. Acta Phys. Polon. B, 44(11):2257–2266, 2013.
Chris Kelso, P. R. D. Pinheiro, Farinaldo S. Queiroz, and William Shepherd. The Muon Anomalous Magnetic Moment in the Reduced
Minimal 3-3-1 Model. Eur. Phys. J. C, 74:2808, 2014.
Manfred Lindner, Moritz Platscher, and Farinaldo S. Queiroz. A Call for New Physics : The Muon Anomalous Magnetic Moment and
Lepton Flavor Violation. Phys. Rept., 731:1–82, 2018.
Andreas Nyffeler. Status of hadronic light-by-light scattering in the muon g − 2. Nuovo Cim. C, 037(02):173–178, 2014.
Matthias Steinhauser. Towards analytic (g − 2)µ at four loops. Int. J. Mod. Phys. Conf. Ser., 35:1460417, 2014.