USO DE LA HORMONA DEL CRECIMIENTO EN CARPA COMÚN (Cyprinus carpio) Y EN SALMÓN (Oncorhynchus kisutch). REVISIÓN

Autores/as

  • Marco A. Imués-Figueroa Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto,
  • Valerio Sbragaglia Instituto de Ciencias del Mar, Barcelona,
  • Joan S. Salas-Leiva Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto,

Palabras clave:

somatic growth, somatostatin, hypertrophy, hyperplasia, transgenic

Resumen

La hormona del crecimiento (GH) actúa sobre los tejidos y/o a través de los factores de crecimiento o IGFs produciendo hiperplasia o hipertrofia celular. La GH es regulada por la somatostatina, la cual, a su vez, es influenciada por las condiciones ambientales y por el estado nutricional del animal. La conversión alimenticia y la calidad de la composición corporal, entre otras características, pueden ser modificadas mediante la manipulación del gen de la GH. Existen reportes sobre incremento significativo en la tasa de crecimiento de salmón coho (Oncorhynchus kisutch), trucha arco iris (Oncorhynchus mykiss), salmón del Atlántico (Salmo salar), dorada (Sparus aurata) y carpa (Cyprinus carpio), a través de la manipulación de la expresión génica de la GH y de otros genes. Esta manipulación ha sido aplicada desde hace varios años con el propósito de producir linajes genéticos, de estas y otras especies de peces, buscando incrementar la producción acuícola. Poco se conoce sobre los efectos y consecuencias de los peces transgénicos al entrar en contacto con las poblaciones naturales. En términos comerciales, los consumidores presentan resistencia a productos provenientes de organismos modificados genéticamente, por lo cual hay una disminución de investigaciones en esta área. Esta es una revisión de las investigaciones desarrolladas en carpa común, una de las especies sobre las cuales se tuvo mayores avances.

Palabras clave: crecimiento somático, somatostatina, hipertrofia, hiperplasia, transgénico

 

USE OF GROWTH HORMONE IN COMMON CARP (Cyprinus carpio) AND SALMON (Oncorhynchus kisutch). REVIEW

ABSTRACT

The growth hormone (GH) acts on the tissues and/or through growth factors IGFs generating cellular hyperplasia or hypertrophy. GH is regulated by somatostatin, which in turn is influenced by environmental conditions and by the nutritional status of the animal. Food conversion and biochemical composition of the flesh, among other characteristics, can be modified by manipulating the GH gene. There are reports of significant increase in growth rate of coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss), atlantic salmon (Salmo salar), sea bream (Sparus aurata) and carp (Cyprinus carpio) through the manipulation of expression GH gene and other genes. Such manipulation has been applied for many years in order to stablish genetic lineages of these and other fish species fowards increasing the yields in the aquaculture production. Little is known about the effects and consequences of transgenic fish when they into contact with wild populations. In commercial terms, consumers are resistant to products from genetically modified organisms, causing a decrease in research in this area. Here, we present a review of the research on the GH carried out in common carp, one of the species for which major progress has been reported.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Marco A. Imués-Figueroa, Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto,

Zootecnista, Especialista en Computación, Especilista en Estadística, Máster en Acuicultura, Profesor Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto, Colombia.

Valerio Sbragaglia, Instituto de Ciencias del Mar, Barcelona,

Biólogo, PhD, Investigador Instituto de Ciencias del Mar, Consejo Superior de Investigaciones, España

Joan S. Salas-Leiva, Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto,

Ingeniero en Producción Acuícola, MSc, PhD, Docente Departamento de Recursos Hidrobiológicos, Universidad de Nriño, Pasto, Colombia.

Citas

Canosa LF, Chang JP, Peter RE. Neuroendocrine control of growth hormone in fish. General and Comparative Endocrinology. 2007; 151: 1-26.

Dunham RA, Winn RN. 11-Production of transgenic fish. In: Pinkert CA (Ed). Trans-genic animal technology: A laboratory handbook. 3rd ed. London: Elsevier. 2014; pp. 305-334.

Chang JP, Wong AOL. Chapter 4 Growth hormone regulation in fish: A multifactorial model with hypothalamic, peripheral and local. Fish Physiology. 2009; 28: 151-195.

National Research Council (NRC). Animal Biotechnology: Scientific Concerns. Na-tional Academy Press, Washington, 2002.

Zhu Z, Li G, He L, Chen S. Novel gene transfer into the fertilized eggs of goldfish (Carassius auratus L. 1758). Z. Angew. Ichthyol. 1985; 1: 31–34.

Zbikowska HM. Fish can be first—advances in fish transgenesis for commercial appli-cations. Transgenic Res. 2003; 12: 379–389.

Dodd A, Curtis PM, Williams LC, Love DR. Zebrafish: bridging the gaps between de-velopment and disease. Hum. Mol. Genet. 2000; 9: 2443–2449.

Dooley K, Zon LI. Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 2000; 10: 252– 256.

Ward AC, Lieschke GJ. The zebrafish as a model system for human disease. Front. Biosci. 2002; 7: 827–833.

Maclean N, Rahman MA, Sohm F, Hwang G, Iyengar A, Ayad H, Smith A, Farahmand H. Transgenic tilapia and the tilapia genome. Gene. 2002; 295 (2): 265-277.

Avashti A. GM fish produce cheap blood-clotting agent. New Scientist. 2004. http://www.newscientist.com (Consultado en septiembre 27, 2015).

AquaNet. Production of transgenic tilapia for the treatment of diabetes: ES-cell Ap-proach. 2005. http://www.aquanet. (Consultado en noviembre 17, 2015).

Hallerman EM, McLean E, Fleming IA. Effects of growth hormone transgenes on the behavior and welfare of aquacultured fishes: A review identifying research needs. Ap-plied Animal Behaviour Science. 2007; 104: 265–294.

Winn RN, Norris MB, Brayer KJ, Torres C, Muller SL. Detections of mutations in transgenic fish carrying a bacteriophage l cII transgene target. Proc. Natl. Acad. Sci. 2000; 97: 12655–12660.

Amanuma K, Takeda H, Amanuma H, Aoki Y. Transgenic zebrafish for detecting mu-tations caused by compounds in aquatic environments. Nat. Biotechnol. 2000; 18: 62–65.

Carvan MJ, Dalton TP, Stuart GW, Nebert DW. Transgenic zebrafish as sentinels for aquatic pollution. Ann. N. Y. Acad. Sci. 2000; 919: 133–147.

Devlin RH, Byatt JC, McLean E, Yesaki TY, Krivi GG, Jaworski EG, Clarke WC, Donaldson EM. Bovine placental lactogen is a potent stimulator of growth and displays strong binding to hepatic liver receptor sites of coho salmon. Gen. Comp. Endocrinol. 1994; 95: 31–41.

Fletcher GL, Shears MA, King MJ, Goddard SV, Kao MH, Du SJ, Davies PL, Hew CL. Biotechnology for aquaculture: transgenic salmon with enhanced growth and freeze-resistance. Bull. Aquacult. Assoc. Can. 1992; 92 (3): 31–33.

Fletcher GL, Davies PL, Hew CL. Genetic engineering of freeze resistant Atlantic salmon. In: Hew CL, Fletcher GL (Eds.). Transgenic fish. River Edge, NJ: World Sci-entific Publishing; 1992. p. 190–208.

Fletcher GL, Shears MA, Yaskowiak ES, King MJ, Goddard SV. Gene transfer: poten-tial to enhance the genome of Atlantic salmon for aquaculture. Aust. J. Exp. Agric. 2004; 44: 1095–1100.

Dunham RA, Ramboux AC, Duncan PL, Hayat M, Chen TT, Lin CM, Kight K, Gonza-lez-Villasenor I, Powers DA. Transfer, expression and inheritance of salmonid growth hormone genes in channel catfish, Ictalurus punctatus, and effects on performance traits. Mar. Mol. Biol. Biotechnol. 1992; 1: 380–389.

Dunham RA,Warr GW, Nichols A, Duncan PL, Argue B, Middleton D, Kucuktas H. Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar. Biotechnol. 2002; 4: 338–344.

Zhong J,Wang Y, Zhu Z. Introduction of the human lactoferrin gene into grass carp (Ctenopharyngodon idellus) to increase resistance against GCH virus. Aquaculture. 2002; 214: 93–101.

Mao W, Wang Y, Wang W, Wu B, Feng J, Zhu Z. Enhanced resistance to Aeromonas hydrophila infection and enhanced phagocytic activities in human lactoferrin-transgenic grass carp (Ctenopharyngodon idellus). Aquaculture. 2004; 242: 93–103.

Krasnov A, Pitkanen TI, Molsa H. Gene transfer for targeted modification of salmonid fish metabolism. Genet. Anal. 1999; 15: 115–119.

Guillen I, Berlanga J, Valenzuela CM, Morales A, Toledo J, Estrada MP, Puentes P, Hayes O, La Fuente J. Safety evaluation of transgenic tilapia with accelerated growth. Mar. Biotechnol. 1999; 1: 2–14.

Mommsen TP. Growth and metabolism. In: Evans DH (Ed.). The Physiology of Fishes. Boca Raton: CRC Press; 1998. p. 65–97.

Mommsen TP. Paradigms ofd growth in fish. Comparative Biochemistry an Phisiology Part B. 2001; 129: 207-219.

Wood AW, Duan C, Bern HA. Insulin-like growth factor signaling in fish. London: International Review of Cytology, Academic Press. 2005; pp. 215–285.

Tu Y, Xie S, Hana D, Yang Y, Jin J, Liua H, Zhu X. Growth performance, digestive enzyme, transaminase and GH-IGF-I axis gene responsiveness to different dietary pro-tein levels in broodstock allogenogynetic gibel carp (Carassius auratus gibelio) CAS III. Aquaculture. 2015; 446: 290–297.

Reindl KM, Sheridan MA. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comparative Biochemistry and

Yang BY, Chan KM, Lin CM, Chen TT. Characterization of rainbow trout (Oncorhynchus mykiss) growth hormone 1 gene and the promoter region of growth hormone 2 ge-ne. Archives of Biochemistry and Biophysics. 1997; 340 (2): 359-368.

McCormick SD, Sakamoto T, Hasegawa S, Hirano T. Osmoregulatory actions of insu-lin-like growth factor-I in rainbow trout (Oncorhynchus mykiss). J. Endocrinol. 1996; 130: 87–92.

Pérez L, Ortiz-Delgado JB, Manchado M. Molecular characterization and transcriptio-nal regulation by GH and GnRH of insulin-like growth factors I and II in white sea-bream (Diplodus sargus). Gene. 2015; In press.

Organización de las Naciones Unidas para la Alimentación y la Acuicultura (FAO). Estado mundial de la pesca y la acuicultura, Sofía 2012. Roma: Departamento de Pesca y Acuicultura; 2012.

Zhang PJ, Hayat M, Joyce C, Gonzalez-Villasenor LI, Lin CM. Gene transfer, expres-sion and inheritance of pRSV-rainbow trout-GH cDNA in the common carp Cyprinus carpio (Linnaeus). Mol. Reprod. Dev. 1990; 25: 3–13.

Chatakondi N, Lovell RT, Duncan PL, Hayat M, Chen TT, Powers DA, Weete JD, Cummins K, Dunham RA. 1995. Body composition of transgenic common carp, Cy-prinus carpio, containing rainbow trout growth hormone gene. Aquaculture. 1995; 138: 99–109.

Hinits Y, Moav B. 1999. Growth performance studies in transgenic Cyprinus carpio. Aquaculture. 1999; 173: 285–296.

Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg, NC, Evans RM. Dramatic growth of mice that develop from eggs microinjected with metal-lothionein-growth hormone fusion gene. Nature. 1982; 300: 611–615.

Zhu Z, Xu K, Xie Y, Li G, He L. A model of transgenic fish. Sci. Sin. 1989; 2: 147–155.

Wei Y, Xie Y, Xu K, Li G, Liu D, Zou J, Li J, Zhu Z. Heredity of human growth hor-mone gene in transgenic carp (Cyprinus carpio, L.). Chinese Journal of Biotechnology. 1992; 8: 140–144.

Zhu Z. Generation of fast-growing transgenic fish: methods and mechanisms. In: Hew CL, Fletcher GL (Eds.). Transgenic fish. Singapure: World Publishing, 1992. p. 92–119.

Zhu Z. Collection of the technical materials of the National 863 High-tech Project of China, ‘‘Middle-scale trial of fast-growing transgenic common carp’’. Wuhan, China: Institute of Hydrobiology, Chinese Academy of Sciences. 2000.

Cui Y, Hung SO, Zhu X. Effect of ration and body size on the energy budget of juve-nile white surgeon. Journal of Fish Biology. 1996; 49: 863–876.

Fu C, Cui Y, Hung SO, Zhu Z. Growth and feed utilization by F4 human growth hormone transgenic carp fed diets with different protein levels. J. Fish Biol. 1998; 53: 115–129.

Fu C, Cui Y, Zhu Z. Whole-body amino acid patterns of F4 human growth hormone transgenic red carp (Cyprinus carpio) fed with different protein levels. Aquaculture. 2000; 189: 287–292.

Cho CY, Slinger S J. Apparent digestibility measurement in feedstuffs for rainbow trout. In: Halver JE, Tiews K. (Eds.). Finfish Nutrition & Fish Feed Technology, Vol. II. Berlin: Heenemann; 1979. p. 239–247.

Ogino C, Saito K. Protein nutrition in fish: I. The utilisation of dietary protein by young carp. Bulletin of The Japanese Society of Scientific Fisheries. 1970; 36: 250–254.

Ogino C, Chiou JY, Takeuchi T. Protein nutrition in fish: VI. Effects of dietary energy sources on the utilisation of proteins by rainbow trout and carp. Bulletin of The Japa-nese Society of Scientific Fisheries. 1976; 42: 213–218.

Takeuchi T, Watanabe T, Ogino C. Optimum ratio of dietary energy to protein for carp. Bulletin of The Japanese Society of Scientific Fisheries. 1979; 45: 983–987.

Mazid MA, Tanaka Y, Katayama T, Rahman MA, Simpson KL, Chichester CO. Growth response of Tilapia zillii fingerlings fed isocaloric diets with variable protein levels. Aquaculture. 1979; 18: 115–122.

De Silva SS, Gunasekera RM, Atapattu D. The dietary protein requirements of young tilapia and an evaluation of the least cost dietary protein levels. Aquaculture. 1989; 80: 271–284.

Inaba D, Ogino C, Takamastu T, Ueda T, Kurokawa K. Digestibility of dietary compo-nents in fishes: II. Digestibility of dietary protein and starch in rainbow trout. Bulletin of The Japanese Society of Scientific Fisheries. 1963; 29: 242–244.

Kitamikado M, Morishita T, Tachino S. Digestibility of dietary protein in rainbow trout: I. Effect of starch and oil contents in diets, and size of fish. Bulletin of The Japa-nese Society of Scientific Fisheries. 1964; 30: 50–54.

Page JW, Andrews JW. Interaction of dietary levels of protein and energy on channel catfish. Journal of Nutrition. 1973; 103: 1339–1346.

Smith BW, Lovell RT. Determination of apparent protein digestibility in feeds for channel catfish. Transaction of The American Fisheries Society. 1973; 102: 831–851.

Weatherley AH, Gill HS. Growth increase produced by bovine growth hormone in grass pickerel, Esox americanus vermiculatus (Le Sueur), and the underlying dynamics of muscle fiber growth. Aquaculture. 1987; 65: 55–65.

Agellon LB, Emery C, Jones JM, Davies SL, Dingle AD, Chen TT. Promotion of rapid growth of rainbow trout (Salmo gairdneri) by a recombinant fish growth hormone. Can. I. Fish. Aquat. Sci. 1988; 45: 146-151.

Higgs DA, Donaldson EM, Dye HM, McBride JR. A preliminary investigation of the effect of bovine growth hormone on growth and muscle composition of coho salmon (Oncorhynchus kisutch). General and Comparative Endocrinology. 1975; 27: 240–253.

Moav B, Hinits Y, Groll Y, Rothbard S. Inheritance of recombinant carp b-actinrGH cDNA gene in transgenic carp. Aquaculture. 1995; 137: 179–185.

Liu Z, Moav B, Faras AJ, Guise KS, Kapuscinski AR, Hackett PB. Functional analysis of elements affecting expression of the b-actin gene of carp. Mol. Cell. Biol. 1990; 10: 3432–3440.

Wohlfarth GW, Moav R. Communal testing, a method of testing the growth of differ-ent genetic groups of common carp in earthen ponds. Aquaculture. 1985; 48: 143–157.

Wohlfarth G, Milstein A. Predicting correction factors for differences in initial weight among genetic groups of common carp in communal testing. Aquaculture. 1987; 60: 13–25.

Wohlfarth GW. Heterosis for growth rate in common carp. Aquaculture. 1993; 113: 31–46.

Fine M, Zilberg D, Cohen Z, Degani G, Moav B, Gertler A. The effect of dietary pro-tein level, water temperature and growth hormone administration on growth and me-tabolism in the common carp (Cyprinus carpio). Comp. Biochem. Physiol. 1996; 114: 35–42.

Schwarz FJ, Kirchgessner M. Amino acid composition of carp Cyprinus carpio L. with varying protein and energy supplies. Aquaculture. 1988; 72: 307–317.

Andrews JW, Stickney RR. Interaction of feeding rates and environmental temperature on growth, food conversion and body composition of channel catfish. Trans. Am. Fish. Sot. 1972; 101: 94-99.

Moss DD, Scott DD. Dissolved-oxygen requirements of three species of fish. Trans. Am. Fish. Sot. 1961; 90: 377-393.

Rexroad CE Jr, Mayo KM, Bolt DJ, Elsasser TH, Miller KF, Behringer RR, Palmiter RD, Rottman FM, Holtzman SH, Wagner TE and Pinkert CA. Production of transgenic pigs barbouring a rat phosphoenolpyruvate carboxykinase-bovine growth hormone fu-sion gene. J. Reprod. Fertil. (Suppl.). 1990; 4 (1): 89-96.

Etherton TD, Wiggins JP, Chung CS, Evock CM, Rebhun JF, Walton PE. Stimulation of pig growth performance by porcine growth hormone and growth hormone releasing factor. J. Anim. Sci. 1986; 63: 1389-1399.

Sheridan MA, Plisetskaya EM, Bern HA, Gorbman A. 1987. Effects of somatostatin-25 and urotensin II on lipid and carbohydrate metabolism of coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 1987; 66: 4054 14.

Cowey CB, Tacon AG. Fish nutrition: Relevance to invertebrates. In: Pruder GD, Lan-goon CJ, Conklin DE (Eds.). Proceedings of the Second International Conference on Aquaculture Nutrition: Biochemical and Physiological Approaches. 1983.

Gatlin DM. Whole-body amino acid composition and comparative aspects of amino acid nutrition of the gold fish: golden shiner and fathead minnow. Aquaculture. 1987; 60: 223-229.

Wilson JW, Poe WE. Relationship of whole body and egg essential amino acid patterns of ammo acid requirement patterns in channel catfish, Ictalurus punctatus. Comp. Bio-chem. Physiol. 1985; 80: 385-388.

Devlin RH, Swanson P, Clarke WC, Plisetskaya E, Dickhoff W, Moriyama S, Yesaki TY, Hew CL. Seawater adaptability and hormone levels in growth enhanced transgenic coho salmon, Oncorhynchus kisutch. Aquaculture. 2000; 191: 367–385.

Devlin RH. Transgenic salmonids. In: Houdebine LM (Ed.). Transgenic animals: Gen-eration and use. Amsterdam, Netherlands: Harwood Academic Publishers: 1997. p. 105– 117.

Devlin RH, Yesaki TY, Donaldson EM, Du SJ, Hew CL. Production of germline trans-genic Pacific salmonids with dramatically increased growth performance. Can. J. Fish. Aquat. Sci. 1995; 52: 1376–1384.

Devlin RH. Sequence of sockeye salmon Type 1 and 2 growth hormone genes and the relationship of rainbow trout with Atlantic and Pacific salmon. Can. J. Fish. Aquat. Sci. 1993; 50: 1738– 1748.

Devlin RH, Biagi CA, Yesaki TY. Growth, viability and genetic characteristics of GH transgenic coho salmon strains. Aquaculture. 2004; 236 (4): 607-632.

Devlin RH, Yesaki TY, Donaldson EM, Hew CL. Transmission and phenotypic effects of an antifreeze/GH gene construct in coho salmon (Oncorhynchus kisutch). Aquacul-ture. 1995; 137: 161–170.

Devlin RH, Donaldson EM. Containment of genetically altered fish with emphasis on Salmonids. Singapore: World Scientific Press; 1992. p. 229–266.

Descargas

Publicado

2016-02-28

Número

Sección

Revisión Literaria