Surface area of activated and modified charcoals obtained from agricultural resources Saccharum officinarum

  • Fredy Colpas C. Universidad de Cartagena
  • Arnulfo Tarón D. Universidad de Cartagena
  • Rafael González C. Universidad de Cartagena
Keywords: Specific surface, agricultural byproduct, carbonization, Boehm’s method.


Activated charcoal is a material used  in industry for absorbing gases and filtrates, cleansing liquids as well as for supporting catalysts in non-oxidative media. In addition, it is utilized in several environmental applications, such as in the absorption of metal lead ions. The objective of this work was the obtainment of activated charcoals by carbonizing sugarcane biomass at 400°C in a nitrogen atmosphere through activation with phosphoric acid and by oxidization with nitric acid or hydrogen peroxide followed by heat treatment. The preparation of activated charcoals from agricultural waste is being developed with excellent and potentially applicable results. In this context, a preparation method is shown using a chemical activation with phosphoric acid, which increased the content of carbon and decreased that of oxygen, then in order to study the development of surface area, it was put through an oxidation process with thermal heating. The charcoals obtained were characterized by proximal analysis, and diffuse reflectance infrared spectroscopy with Fourier transform was used for the determination of oxygenated functional groups. Basic oxygenated groups and acids were determined by means of Boehm’s method, while the BET method was used for the measurement of the surface area. The area of micropores was increased by treatment with HNO3 and H2O2 from 278m2/g up to 402 and 446m2/g, respectively. Most of the area on the charcoals was due to micropores. Charcoal pH was approximately 3 and COOH groups reached values of up to 2.12meq/g.


Download data is not yet available.


Amaringo, A.; Hormaza, A. 2013. Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes. Revista de Investigación Agraria y Ambiental. 4(2):27 - 36.

Arenas, E.; Chejne, F. 2004. The effect of the activating agent and temperature on the porosity development of physically activated coal chars. Carbon. 42(12–13):2451 - 2455. doi:

ASTM D3178-89 - American Society for Testing and Materials. 2002. Standard Test Methods for Carbon and Hydrogen in the Analysis Sample of Coal and Coke (Withdrawn 2007). En:; consulta: mayo, 2016.

ASTM - American Society for Testing and Materials. 2004. Anual Book of ASTM. Standards, Volume 01.08. American Society for Testing and Materials, West Constohocken. 713p.

Boehm, H.P. 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon. 32 (5):759 - 769. doi:

Bordoloi, N.; Goswami, R.; Kumar, M.; Kataki, R. 2017. Biosorption of Co (II) from aqueous solution using algal biochar: Kinetics and isotherm studies. Bioresource Technology 244:1465 - 1469. doi:

Caglayan, B.; Aksoylu, B. 2013. CO2 adsorption on chemically modified activated carbón. J. Hazard. Mater. 252:19 - 28. doi:

Carvalho, C.; Zapata, C. 2015. Thermodynamic analysis of sorption isotherms of dehydrated yacon (Smallanthus sonchifolius) bagasse. Food Bioscience 12:26 - 33. doi:

Castilla, M.; López-Ramón, M.V.; Carrasco-Marín, F. 2000. Changes in surface chemistry of activated carbons by wet oxidation. Carbon. 38(14):1999 - 2001. doi:

Cao, Y.; Wang, K.; Wang, X.; Gu, Z.; Ambrico, T.; Gibbons, W.; Fand, Q.; Talukder, T. 2017. Preparation of active carbons from corn stalk for butanol vapor adsorption. Journal of Energy Chemistry. 26:35 - 41. doi:

Castrillón, M.; Giraldo, L.; Moreno, J. 2012. Carbones activados obtenidos a partir de residuos de llantas con diferente tamaño de partícula. Afinidad LXIX. (45):266 - 271.

Colpas, F.; Tarón, A.; Fong, W. 2015. Analisis del desarrollo textural de carbones activados preparados a partir de zuro de maíz. Rev. Temas Agrarios. 20(1):105 - 114.

Costa, P.; Alves, J.; Azevedo, D.; Bastos, M. 2017. Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes. Industrial Crops & Products. 109:134 - 140. doi:

Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. 2012. Langmuir, Freundlich, Temkin and Dubinin-Radushkevichn isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice Husk. IOSR J. Appl. Chem. 3(1):38 - 45.

Fraga, M.A.; Jordao, E.; Mendes, M.J.; Freitas, M.M.A.; Faria, J.L.; Figueiredo, J.L. 2009. Properties of carbon-supported platinum catalysts: role of carbon surface sites. J. Catal. 209:355 - 364. doi:

Gao, Y.; Xu, S.; Ortaboy, S.; Kan, Y.; Yue, Q.; Gao, B. 2016. Preparation of well-developed mesoporous activated carbon with high yield by ammonium polyphosphate activation. Journal of the Taiwan Institute of Chemical Engineers. 66:394 - 399. doi:

García, V.; Moreno, J. C. 2007. Caracterización superficial en fase gas y líquida de carbones activados. Revista de Ingeniería. 27:1 - 16.

Huidobro, A.; Pastor, A.C.; Rodríguez-Reinoso, F. 2001. Preparation of Activated Carbon Cloth from Viscous Rayon. Part IV. Chemical Activation. Carbon. 39(3):389 - 398. doi:

Jusoh, A.; Hartini, W.J.H.; Ali, N., Endut, A., 2011. Study on the removal of pesticide in agricultural runoff by granular activated carbon. Bioresour. Technol. 102:5312 - 5318. doi:

Kilic, M.; Apaydin-Varol, A.; Pütün. 2011. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. J Hazard Mat. 189 (1-2):397 - 403.

Piñerez, J.; Barraza, J.; Blandon, M. 2009. Constantes cinéticas de flotación del grupo maceral vitrinita de dos carbones colombianos. Rev ing e inv. 29(3):29 - 35.

Palmira, V.; Cauca, V. 2007. Caracterización morfológica del carbonizado de carbones pulverizados : estado del arte. Revista Facultad de Ingeniería. (41):84 - 97.

Primera, O.; Colpas, F.; Meza, E.; Fernández, R. 2011. Carbones activados a partir de bagazo de caña de azúcar y zuro de maíz para la adsorción de cadmio y plomo. Rev Acad Colomb Cienc. 25(136):387 - 396.

Rodríguez-Reinoso, F y Molina-Sabio, M. (1998). Carbones activados a partir de materiales lignocelulósicos. Química e Industria.45(9):563-571

SCFI. Secretaría de Comercio y Fomento Industrial. 1982. Norma mexicana NMX-B-158-1982, métodos para determinar el azufre total en la muestra de carbón y coque. En: 1982.pdf. ; consulta: mayo, 2016.

Shamsijazeyi, H.; Kaghazchi T. 2010. Investigation of nitricacid treatment of activated carbon for enhanced aqueous mercury removal. J Ind Eng Chem. 16(5):852 - 858. doi:

Song, X.; Liu, H.; Chenga, L.; Qu. Y.2010. Surface modificationof coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption. Desalination. 255(1-3):78 - 83. doi:

Tongpoothorn, W.; Sriuttha, M.; Homchan, P.; Chanthai, S.; Ruangviriyacha. C. 2011. Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermochemical activation and characterization of their physicochemical properties. Chem Eng Res Des. 89(3):335 - 340.doi:

Tzvetkov, G.; Mihaylova, S.; Stoitchkova, k.; Tzvetkov, P.; Spassov, T. 2016. Mechanochemical and chemical activation of lignocellulosic material to prepare powdered activated carbons for adsorption applications. Powder Technology. 299:41 - 50. doi:

Yahya, M.; Al-Qodah, Z.; Ngah, C. 2015. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable Sustainable Energy Review. 46: 218 - 235. doi:

How to Cite
Colpas C., F., Tarón D., A., & González C., R. (2017). Surface area of activated and modified charcoals obtained from agricultural resources Saccharum officinarum. Revista De Ciencias Agrícolas, 34(2), 62-72.