contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 36 No. E (2019): 50 years special edition, June - December 2019

Effects of Lippia sidoides Cham. (Verbenaceae) essential oils on the honey bees, Apis mellifera (Apidae: Hymenoptera), foraging

DOI
https://doi.org/10.22267/rcia.1936E.104
Submitted
October 16, 2019
Published
2019-10-16

Abstract

The use of plant essential oils has been adopted as less hazardous to the environment and human health than synthetic insecticides used for the control of insects that transmit diseases. Despite of exerting insecticidal activities against several insect disease vectors, the potential impacts on non-target organisms exerted by essential oils extracted from Lippia sidoides (Cham.) have not received adequate attention. Here, we evaluated the susceptibility and potential changes in consumption rates of honey bees, Apis mellifera (L.), when exposed to essential oils extracted from L. sidoides. Was exposed forager bees to honey syrup (50% v/v) containing L. sidoides essential oil for 5 h. After this exposure period, the bees received regular honey syrup for another 19 h period. Six essential oil concentrations was used, namely 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 µL of essential oil/mL of syrup, and evaluated the syrup consumption and bees mortality in both periods (at the 5th and 24th h). The results reveal that independent of the essential oil concentration, the forager bees fed significantly less on L. sidoides essential oil-containing honey syrup. However, feeding on L. sidoides essential oil-containing honey syrup did not cause significant mortality when compared with bees that were not exposed to the essential oils. Thus, the results demonstrate that L. sidoides essential oils exhibited adequate selectivity against honey bees.

References

  1. Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream: Allured Publishing Corporation. 804p.
  2. Aguiar, R.W.S., Dos Santos, S.F., Da Silva Morgado, F., Ascencio, S.D., De Mendonça Lopes, M., Viana, K.F., Didonet, J. & Ribeiro, B.M. (2015). Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. PLOS ONE. 10 (2): e0116765. doi: https://doi.org/10.1371/journal.pone.0116765
  3. Bailey, J., Scott-Dupree, C., Harris, R., Tolman, J.& Harris, B., (2005). Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada. Apidologie. 36 (4): 623-633. doi: https://doi.org/10.1051/apido:2005048
  4. Baldim, I., Tonani, L., Von Zeska Kress, M.R. & Pereira Oliveira, W., (2019). Lippia sidoides essential oil encapsulated in lipid nanosystem as an anti-Candida agent. Industrial Crops and Products. 127: 73-81. doi: https://doi.org/10.1016/j.indcrop.2018.10.064
  5. Barbosa, W.F., De Meyer, L., Guedes, R.N.C. & Smagghe, G. (2015). Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Apidae). Ecotoxicology. 24 (1): 130-142. doi: htpps://doi.org/10.1007/s10646-014-1365-9
  6. Barker, R.J. & Lehner, Y. (1974). Acceptance and sustenance value of naturally occurring sugars fed to newly emerged adult workers of honey bees (Apis mellifera L.). J. Exp. Zoo. 187 (2): 277. doi: https://doi.org/10.1002/jez.1401870211
  7. Botelho, M.A., Barros, G., Queiroz, D.B., Carvalho, C.F., Gouvea, J., Patrus, L., Bannet, M., Patrus, D., Rego, A., Silva, I., Campus, G. & Araújo-Filho, I. (2016). Nanotechnology in Phytotherapy: Antiinflammatory Effect of a Nanostructured Thymol Gel from Lippia sidoides in Acute Periodontitis in Rats. Phytother. Res. 30 (1): 152-159. doi: https://doi.org/10.1002/ptr.5516
  8. Brodschneider, R. & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie. 41 (3): 278-294. doi: https://doi.org/10.1051/apido/2010012
  9. Brodschneider, R., Libor, A., Kupelwieser, V. & Crailsheim, K. (2017). Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution. PLOS ONE. 12(3): e0174684. doi: https://doi.org/10.1371/journal.pone.0174684
  10. Camilo, C.J., Alves Nonato, C.D.F., Galvão-Rodrigues, F.F., Costa, W.D., Clemente, G.G., Sobreira Macedo, M.A.C., Galvão Rodrigues, F.F. & Da Costa, J.G.M. (2017). Acaricidal activity of essential oils: a review. Trends in Phytochemical Research. 1(4): 183-198. doi: http://tpr.iau-shahrood.ac.ir/article_535451.html
  11. Corcellas, C., Eljarrat, E. & Barceló, D. (2015). First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). Environ. Int. 75: 110-116. doi: https://doi.org/10.1016/j.envint.2014.11.007
  12. Crailsheim, K. (1998). Trophallactic interactions in the adult honeybee (Apis mellifera L.). Apidologie. 29 (1-2): 97-112. doi: https://doi.org/10.1051/apido:19980106
  13. De Lima, G.P.G., De Souza, T.M., De Paula Freire, G., Farias, D.F., Cunha, A.P., Ricardo, N.M.P.S., De Morais, S.M. & Carvalho, A.F.U. (2013). Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol. Res. 112 (5): 1953-1958. doi: https://doi.org/10.1007/s00436-013-3351-1
  14. Desmedt, L., Hotier, L., Giurfa, M., Velarde, R. & De Brito Sanchez, M.G. (2016). Absence of food alternatives promotes risk-prone feeding of unpalatable substances in honey bees. Sci. Rep. 6 : 31809. doi: https://doi.org/10.1038/srep31809
  15. Ferreira, T.P.S., Mourão, D.S.C., Dos Santos, G.R., Guimarães, L.G.L., Pires, E.C.F., Santos, W.F. & Aguiar, R.W.S., (2018). Fungistatic activity of essential oil of Lippia sidoides Cham. against Curvularia lunata Afri. J. Agri. Res. 13 (14): 704-713. doi: https://doi.org/10.5897/AJAR2018.12977
  16. Figueiredo, M.B., Gomes, G.A., Santangelo, J.M., Pontes, E.G., Azambuja, P., Garcia, E.S. & Carvalho, M.G.D. (2017). Lethal and sublethal effects of essential oil of Lippia sidoides (Verbenaceae) and monoterpenes on Chagas disease vector Rhodnius prolixus. Memórias do Instituto Oswaldo Cruz. 112: 63-69. doi: http://dx.doi.org/10.1590/0074-02760160388
  17. Furtado, R.F. (2005). Atividade larvicida de oleos essenciais contra Aedes aegypti L. (Diptera: Culicidae). Neotrop. Entomol. 34 (5): 843-848. doi: http://dx.doi.org/10.1590/S1519-566X2005000500018
  18. Gashout, H.A., Goodwin, P.H. & Guzman-Novoa, E., (2018). Lethality of synthetic and natural acaricides to worker honey bees (Apis mellifera) and their impact on the expression of health and detoxification-related genes. Environ. Sci. Pollut. R. 25 (34): 34730-34739. doi: http://dx.doi.org/10.1007/s11356-018-3205-6
  19. Hughes, M.F., Ross, D.G., Starr, J.M., Scollon, E.J., Wolansky, M.J., Crofton, K.M. & DeVito, M.J. (2016). Environmentally relevant pyrethroid mixtures: A study on the correlation of blood and brain concentrations of a mixture of pyrethroid insecticides to motor activity in the rat. Toxicology. 359-360: 19-28. doi: https://doi.org/10.1016/j.tox.2016.06.013
  20. Jukic, M., Politeo, O., Maksimovic, M., Milos, M. & Milos, M., (2007). In Vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother. Res. 21 (3): 259-261. doi: https://doi.org/10.1002/ptr.2063
  21. Lu, Q., Sun, Y., Ares, I., Anadón, A., Martínez, M., Martínez-Larrañaga, M.R., Yuan, Z., Wang, X. & Martínez, M.A. (2019). Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ. Res. 170: 260-281. doi: https://doi.org/10.1016/j.envres.2018.12.045
  22. Melo, M.T.P., Carvalho Júnior, W.G.O., Souza, M.F., Figueiredo, L.S. & Martins, E.R. (2011). Produção de fitomassa e teor de óleo essencial de folhas de alecrim-pimenta (Lippia sidoides Cham.) em diferentes espaçamentos de plantio. Rev. Bras. Pl. Med. 13: 230-234. doi: http://dx.doi.org/10.1590/S1516-05722011000200016.
  23. Moreira, S.B.L.C., Guimarães-Brasil, M.O., Holanda-Neto, J.P., Souza, M.C.M. & Souza, E.A. (2016). Avaliação in vitro da eficácia do óleo essencial do alecrim pimenta (Lippia sidoides) no combate a varroase em Apis mellifera L. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 11(1). doi: https://doi.org/10.18378/rvads.v11i1.4002
  24. Mühlen, C.V. (2009). Índices de retenção em cromatografia gasosa bidimensional abrangente. Sci. Chromatogr. 1: 21-29.
  25. Mourão, D.S.C.; Souza, M.R.; Santos, G.R.; Guimarães, L.G.L.; Pires, E.C.F.; Santos, W.F.; Aguiar, R.W.S. (2018) Fungistatic activity of essential oils of Lippia sidoides Cham. Against Curvularia lunata. African Journal of Agricultural Research. 13(14) 704:713. doi: http://dx.doi.org/10.5897/AJAR.2018.12977
  26. Ndakidemi, B., Mtei, K. & Ndakidemi, P.A., (2016). Impacts of synthetic and botanical pesticides on beneficial insects. Agri. Sci. 7 (6): 364-372. doi: http://dx.doi.org/10.4236/as.2016.76038
  27. Rand, E.E.D., Smit, S., Beukes, M., Apostolides, Z., Pirk, C.W.W. & Nicolson, S.W. (2015). Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci. Rep. 5: 11779. doi: http://dx.doi.org/10.1038/srep11779
  28. RCoreTeam. (2019). R: A Language and Environment for Statistical Computing. Package GLM, NLME. Vienna, Austria: R Foundation for Statistical Computing.
  29. Serra Bonvehí, J., Ventura Coll, F. & Ruiz Martínez, J.A. (2016). Residues of essential oils in honey after treatments to control Varroa destructor. J. Essent. Oil Res. 28 (1): 22-28. doi: http://dx.doi.org/10.1080/10412905.2015.1076741
  30. Smith, L.B., Kasai, S. & Scott, J.G., (2016). Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pest. Biochem. Physiol. 133: 1-12. doi: https://doi.org/10.1016/j.pestbp.2016.03.005
  31. Tomé, H.V.V., Martins, G.F., Lima, M.A.P., Campos, L.A.O. & Guedes, R.N.C. (2012). Imidacloprid-Induced Impairment of Mushroom Bodies and Behavior of the Native Stingless Bee Melipona quadrifasciata anthidioides. PLOS ONE. 7 (6): e38406. doi: http://dx.doi.org/10.1371/journal.pone.0038406
  32. Tomé, H.V.V., Ramos, G.S., Araújo, M.F., Santana, W.C., Santos, G.R., Guedes, R.N.C., Maciel, C.D., Newland, P.L. & Oliveira, E.E. (2017). Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees. Royal Soc.Open Sci. 4: 160866. doi: https://doi.org/10.1098/rsos.160866
  33. Tschoeke, P.H., Oliveira, E.E., Dalcin, M.S., Silveira-Tschoeke, M.C.A.C. & Santos, G.R. (2015). Diversity and flower-visiting rates of bee species as potential pollinators of melon (Cucumis melo L.) in the Brazilian Cerrado. Sci. Hortic. 186: 207-216. doi: https://doi.org/10.1016/j.scienta.2015.02.027
  34. Tschoeke, P.H., Oliveira, E.E., Dalcin, M.S., Silveira-Tschoeke, M.C.A.C., Sarmento, R.A. & Santos, G.R. (2019). Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields. Env. Pollution. 251: 591-599. doi: https://doi.org/10.1016/j.envpol.2019.04.133
  35. Van Lexmond, M.B., Bonmatin, J.M., Goulson, D. & Noome, D.A. (2015). Worldwide integrated assessment on systemic pesticides. Environ. Sci. Pollut. Res. 22 (1): 1-4. doi: http://dx.doi.org/10.1007/s11356-014-3220-1
  36. World Health Organization. (2009). Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization. 147p.
  37. Wilson-Rich, N., Allin, K., Carreck, N. & Quigley, A. (2018). The Bee: a natural history. New Jersey,: Princeton University Press. 224p.
  38. Zaworra, M. & Nauen, R. (2019). New approaches to old problems: Removal of phospholipase A2 results in highly active microsomal membranes from the honey bee, Apis mellifera. Pest. Biochem. Physiol. doi: https://doi.org/10.1016/j.pestbp.2019.04.014

Downloads

Download data is not yet available.