Growth performance of Astyanax altiparanae fed with plant and/or animal lipid sources

Keywords: bovine fat, fish nutrition, neotropical fish, vegetable oils


The lambari, Astyanax altiparanae, exhibits a great potential for aquaculture due to its omnivory, rapid growth and ease captive production. Despite of fish lipid metabolism being directly related to the dietary lipid consumed, which may lead to changes in fish growth, nothing much have been established regarding the lipid sources that can be applied in A. altiparanae captive production. Thus, this present research was conducted aiming to evaluate the growth performance and whole body composition of A. altiparanae fed with lipid sources of plant and/or animal origins. Were used a Completely Randomized design experiment with five treatments.  The treatments consisted of isoproteic and isoenergetic diets, containing the following lipid sources: T1: linseed, chia and sunflower oils; T2: linseed and corn oils; T3: linseed, chia, corn and sunflower oils; T4: sunflower, corn and fish oils; T5: linseed, chia, sunflower, corn oils and bovine fat. Each treatment was replicated six times, where the experimental units consists of 10 fishes (averaged weight:  4.0 + 0.5 g) placed in an aquarium containing 80L of dechlorinated water. Were compared the growth performance parameters among the treatments by applying an one-way analysis of variance (ANOVA) at 5% significance (P < 0.05). The results revealed that both growth performance and whole body composition of A. altiparanae were not affected by the lipid source, which indicate that these fishes can efficiently use both vegetable lipid sources as well as mixtures of vegetable and animal lipid sources without any growth disadvantages.


Download data is not yet available.


Abilhoa, V. (2007). Aspectos da história natural de Astyanax scabripinnis Jenyns (Teleostei, Characidae) em um riacho de floresta com araucária no sul do Brasil. Rev. Bras. Zool., 24(4): 997-1005. doi:

Asdari, R., Aliyu‐Paiko, M., Hashim, R. & Ramachandran, S. (2011). Effects of different dietary lipid sources in the diet for Pangasius hypophthalmus (Sauvage, 1878) juvenile on growth performance, nutrient utilization, body indices, muscle and liver fatty acid composition. Aquac. Nutr. 17(1): 44-53. doi:

Bell, J. G. & Koppe, W. (2010). Lipids in aquafeeds. In: Turchini, G. M., Ng, W. K., & Tocher, D. R. Fish oil replacement and alternative lipid sources in aquaculture feeds. pp. 21-59. First edition. Flórida: EUA. 249 p.

Bell, J. G., Henderson, R. J., Tocher, D. R., McGhee, F., Dick, J. R., Porter, A. & Sargent, J. R. (2002). Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. J. Nutr. 132(2): 222-230. doi:

Bell, J. G., McGhee, F., Campbell, P. J. & Sargent, J.R. (2003). Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil “wash out”. Aquacult. 218(1-4): 515-528. doi:

Campelo, D.A.V., Salaro, A.L., Ladeira, A.L.F., Moura, L.B.D. & Furuya, W.M. (2018). Dietary lysine requirement of adult lambari (Astyanax altiparanae) (Garutti and Britski, 2000). R. Bras. Zootec., 47: e20160325. doi:

Castro, C., Corraze, G., Firmino-Diógenes, A., Larroquet, L., Panserat, S. & Oliva-Teles, A. (2016). Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles. Brit. J. Nutr., 116(1):19-34. doi:

CEUAP- Comissão de Ética no Uso de Animais de Produção (2017). Protocol 017/2017. Retrieved from URL

Henderson, R. J. & Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. Prog. Lipid. Res. 26(4): 281-347. doi:

Lim, C., Yildirim-Aksoy, M. & Klesius, P. (2011). Lipid and fatty acid requirements of tilapias. N. Am. J. Aquacult. 73(2): 188-193. doi:

Martino, R.C., Cyrino, J.E.P., Portz, L. & Trugo, L.C. (2002). Performance and fatty acid composition of surubim (Pseudoplatystoma coruscans) fed diets with animal and plant lipids. Aquacult. 209(1-4): 233-246. doi:

Ng, W.K. & Wang, Y. (2011). Inclusion of crude palm oil in the broodstock diets of female Nile tilapia, Oreochromis niloticus, resulted in enhanced reproductive performance compared to broodfish fed diets with added fish oil or linseed oil. Aquacult. 314(1-4): 122-131. doi:

Ng, W.K., Chong, C.Y., Wang, Y. & Romano, N. (2013). Effects of dietary fish and vegetable oils on the growth, tissue fatty acid composition, oxidative stability and vitamin E content of red hybrid tilapia and efficacy of using fish oil finishing diets. Aquacult. 372: 97-110. doi:

Paulino, R.R., Pereira, R.T., Fontes, T.V., Oliva-Teles, A., Peres, H., Carneiro, D. J. & Rosa, P.V. (2018). Optimal dietary linoleic acid to linolenic acid ratio improved fatty acid profile of the juvenile tambaqui (Colossoma macropomum). Aquacult. 488: 9-16. doi:

Pontes, M.D., Campelo, D.A., Ferraz, R.B., Zuanon, J.A., Furuya, W.M. & Lucia, S. A. (2019). Soybean and linseed oil in replacement of fish oil in diets for female lambari Astyanax altiparanae Garutti & Britski, 2000. Lat. Am. J. Aquat. Res. 47(2): 260-269. doi:

Senadheera, S.P.S.D., Turchini, G.M., Thanuthong, T. & Francis, D.S. (2010). Effects of dietary α-linolenic acid (18: 3n− 3)/linoleic acid (18: 2n− 6) ratio on growth performance, fillet fatty acid profile and finishing efficiency in Murray cod. Aquacult. 309(1-4): 222-230. doi:

Tacon, A.G. & Metian, M. (2008). Global overview on the use of fishmeal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquacult. 285(1-4):146-158. doi:

Tacon, A.G. & Metian, M. (2015). Feed matters: satisfying the feed demand of aquaculture. Rev. Fish Sci. Aquac. 23 (1):110. doi:

Thanuthong, T., Francis, D.S., Manickam, E., Senadheera, S.D., Cameron-Smith, D. & Turchini, G.M. (2011). Fish oil replacement in rainbow trout diets and total dietary PUFA content: II) Effects on fatty acid metabolism and in vivo fatty acid bioconversion. Aquacult. 322: 99-108. doi:

Tocher, D.R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 41(5): 717-732. doi:

Tocher, D.R. (2015). Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquacult. 449: 94-107. doi: rights and content

Turchini, G.M., Francis, D.S., Senadheera, S., Thanuthong, T. & De Silva, S.S. (2011). Fish oil replacement with different vegetable oils in Murray cod: evidence of an “omega-3 sparing effect” by other dietary fatty acids. Aquacult. 315(3-4): 250-259. doi:

Turchini, G.M., Ng, W.K. & Tocher, D.R. (2010). Fish oil replacement and alternative lipid sources in aquaculture feeds. First edition. Boca Raton, New York: CRC Press. 249 p.

Vaz, M.M., Torquato, V.C. & Barbosa, N. (2000). Guia ilustrado de peixes da bacia do Rio Grande. CEMIG: CETEC, Belo Horizonte. 144p.

Vazzoler, A.E. & Menezes, N.A. (1992). Síntese de conhecimentos sobre o comportamento reprodutivo dos Characiformes da América do Sul (Teleostei, Ostariophysi). Rev. Bras. Biol. 52(4): 627-40.

How to Cite
Chaves, W., Almeida, Érica, Carneiro, C., Magnone, L., Martins, N., Bessonart, M., Zuanon, J., & Salaro, A. (2019). Growth performance of Astyanax altiparanae fed with plant and/or animal lipid sources. Revista De Ciencias Agrícolas, 36(E).
Research and scientific and technological innovation article