Response of two pepper species (Capsicum chinense Jacq. and Capsicum frutescens L.) to salt stress at germination stage in Northeast Brazil

Authors

  • Mairton Gomes da Silva Federal University of Recôncavo of Bahia
  • Ancélio Ricardo de Oliveira Gondim Federal University of Campina Grande
  • Eder Ramon Feitoza Ledo Federal University of Ceará
  • Anna Hozana Francilino Federal Rural University of Pernambuco
  • Yasmin da Silva Federal Institute of Education
  • Hans Raj Gheyi Federal University of Recôncavo of Bahia

DOI:

https://doi.org/10.22267/rcia.213802.161

Keywords:

Electrical conductivity, cultivation establishment, initial growth, seedling emergence, salt stress

Abstract

Salinity is one of the striking problems in agricultural production in many parts of the world. Seed germination and seedling growth are two critical stages for the establishment of crops generally most sensitive to salt stress. The present study aimed at evaluating the germination and initial growth of pepper seedlings produced from seeds under different soaking times in NaCl solutions. The experiment was carried out in a completely randomized design, in a 2 × 4 × 5 factorial scheme using two pepper species (Capsicum chinense Jacq. and Capsicum frutescens L.), four levels of electrical conductivity (EC) of solutions (1.5, 3.0, 4.5, and 6.0 dS m-1) and five times of seed soaking in the solutions (2, 4, 6, 8 and 10 h), with three replications. The traits evaluated were the number of germinated seedlings, percentage of germination, seedling height, and root length. The results showed that C. frutescens pepper was more tolerant to different times of soaking in saline solutions prepared with NaCl compared to C. chinense. Thus, the results suggest that depending on the pepper species, it is recommended to use seeds primed in saline solutions with salinity levels compatible with those under field conditions (in saline soils and/or irrigation with saline waters).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adebisi, M. A.; Kehinde, T. O.; Abdul-Rafiu, M. A.; Esuruoso, O. A.; Oni, O. D.; Egbeleye, D. (2015). Effect of seed invigoration by osmopriming on seed quality parameters in three Capsicum species under ambient humid conditions. Nigeria Agricultural Journal. 46(1): 183-191.

Alcalá-Rico, J. S. G. J.; López-Benítez, A.; Vázquez-Badillo, M. E.; Sánchez-Aspeytia, D.; Rodríguez-Herrera, S. A.; Pérez-Rodríguez, M. A.; Ramírez-Godina, F. (2019). Seed physiological potential of Capsicum annuum var. glabriusculum genotypes and their answers to pre-germination treatments. Agronomy. 9(6): 325. doi: 10.3390/agronomy9060325

Aloui, H.; Aymen, E. M.; Chérif, H. (2017). Seed priming to improve seedling growth of pepper cultivars exposed to salt concentrations. International Journal of Vegetable Science. 23(6): 489-507. doi: 10.1080/19315260.2017.1326996

Andrade, S.; Laurentin, H. (2015). Efecto del nitrato de potasio sobre la germinación de semillas de tres cultivares de ají dulce (Capsicum chinense Jacq.). Revista Unellez de Ciencia y Tecnología. 33: 25-29.

Arif, Z.; Asgher, A.; Zia, A.; Riaz, M. (2019). Effect of halopriming along with hydropriming on germination of wheat (Triticum aestivum L.) seeds. Asian Journal of Research in Crop Science. 3(1): 1-7. doi: 10.9734/AJRCS/2019/v3i130039

Balouchi, H.; Dehkordi, S. A.; Dehnavi, M. M.; Behzadi, B. (2015). Effect of priming types on germination of Nigella sativa under osmotic stress. South Western Journal of Horticulture, Biology and Environment. 6(1): 1-20.

Barbosa, W. F. S.; Steiner, F.; Oliveira, L. C. M.; Henrique, P.; Chagas, M. (2016). Comparison of seed priming techniques with regards to germination and growth of watermelon seedlings in laboratory condition. African Journal of Biotechnology. 15(46): 2596-2602. doi: 10.5897/AJB2016.15279

Barroca, M. V.; Bonomo, R.; Fernandes, A. A.; Souza, J. M. (2015). Lâminas de irrigação nos componentes de produção das pimentas ‘De Cheiro’ e ‘Dedo-de-Moça’. Agro@mbiente. 9(3): 243-250. doi: 10.18227/1982-8470ragro.v9i3.2342

Batista, T. B.; Binotti, F. F. S.; Cardoso, E. D.; Bardiviesso, E. M.; Costa, E. (2015). Aspectos fisiológicos e qualidade de mudas da pimenteira em resposta ao vigor e condicionamento das sementes. Bragantia. 74(4): 367-373. doi: 10.1590/1678-4499.0133

Bojórquez-Quintal, E.; Velarde-Buendía, A.; Ku-González, A.; Carillo-Pech, M.; Ortega-Camacho, D.; Echevarría-Machado, I.; Pottosin, I.; Martínez-Estévez, M. (2014). Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Frontiers in Plant Science. 5: 605. doi: 10.3389/fpls.2014.00605

Ministério da Agricultura Pecuária e Abastecimento - Brazil. (2009). Regras para análise de sementes. Brasília: SNDA/DNDV/CLAV. 395p.

Caldas, A. L. D.; Lima, E. M. C.; Carvalho, J. A.; Rezende, F. C. (2016). Manejo da irrigação em diferentes fases fenológicas da pimenta Cayenne cultivada em ambiente protegido. Revista Brasileira de Agricultura Irrigada. 10(2): 553-564. doi: 10.7127/RBAI.V10N200403

Caldeira, C. M.; Carvalho, M. L. M.; Guimarães, R. M.; Coelho, S. V. B. (2014). Physiological priming and pelleting of tobacco seeds. Seed Science and Technology. 42(2): 180-189. doi: 10.15258/sst.2014.42.2.07

Ceccarini, C.; Antognoni, F.; Biondi, S.; Fraternale, A.; Verardo, G.; Gorassini, A.; Scoccianti, V. (2019). Polyphenol-enriched spelt husk extracts improve growth and stress-related biochemical parameters under moderate salt stress in maize plants. Plant Physiology and Biochemistry. 141: 95-104. doi: 10.1016/j.plaphy.2019.05.016

Chichanoski, C.; Ferreira, B. R.; Moterle, L. M.; Santos, R. F. (2019). Physiological potential of soybean seeds under hypoxia and salinity stress. Científica. 47(2): 210-220. doi: 10.15361/1984-5529.2019v47n2p210-220

Dalchiavon, F. C.; Neves, G.; Haga, K. I. (2016). Efeito de stresse salino em sementes de Phaseolus vulgaris. Revista de Ciências Agrárias. 39(3): 404-412. doi: 10.19084/RCA15161

Demir, I.; Ermis, S.; Mavi, K.; Matthews, S. (2008). Mean germination time of pepper seed lots (Capsicum annuum L.) predicts size and uniformity of seedlings in germination tests and transplant modules. Seed Science and Technology. 36(1): 21-30. doi: 10.15258/sst.2008.36.1.02

Dinu, M.; Soare, R.; Hoza, G.; Băbeanu, C. (2018). Changes in phytochemical and antioxidant activity of hot pepper fruits on maturity stages, cultivation areas and genotype. South Western Journal of Horticulture, Biology and Environment. 9(2): 65-76.

Ebert, A. W.; Wu, T. H. (2019). The effect of seed treatments on the germination of fresh and stored seeds of okra (Abelmoschus esculentus) and water spinach (Ipomoea aquatica). Journal of Horticulture. 6(1): 254. doi: 10.4172/2376-0354.1000254

Eremrena, P. O.; Mensah, S. I. (2016). Effect of plant growth regulators and nitrogenous compounds on seed germination of pepper (Capsicum frutescens L). Journal of Applied Sciences and Environmental Management. 20(2): 242-250. doi: 10.4314/jasem.v20i2.3

Ermis, S.; Ozden, E.; Njie, E. S.; Demir, I. (2016). Pre-treatment germination percentages affected the advantage of priming treatment in pepper seeds. Journal of Experimental Agriculture International. 13(1): 1-7. doi: 10.9734/AJEA/2016/26810

Eskandari, H.; Alizadeh-Amraie, A. (2014). Improvement of lentil germination performance under salt and drought conditions using seed priming treatments. Seed Science and Technology. 42(1): 87-91. doi: 10.15258/sst.2014.42.1.09

Farooq, M.; Rehman, A.; Al-Alawi, A. K. M.; Al-Busaidi, W. M.; Lee, D.-J. (2020). Integrated use of seed priming and biochar improves salt tolerance in cowpea. Scientia Horticulturae. 272: 109507. doi: 10.1016/j.scienta.2020.109507

Feghhenabi, F.; Hadi, H.; Khodaverdiloo, H.; van Genuchten, M. (2020). Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management. 231: 106022. doi: 10.1016/j.agwat.2020.106022

Fredj, M. B.; Zhani, K.; Hannachi, C.; Mehwachi, T. (2013). Effect of NaCI priming on seed germination of four coriander cultivars (Coriandrum sativum). Eurasian Journal of Biosciences. 7(1): 21-29. doi: 10.5053/ejobios.2013.7.0.3

Fu, L.; Shen, Q.; Kuang, L.; Yu, J.; Wu, D.; Zhang, G. (2018). Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Plant Physiology and Biochemistry. 130: 248-257. doi: 10.1016/j.plaphy.2018.07.013

García-Caparrós, P.; Lao, M. T. (2018). The effects of salt stress on ornamental plants and integrative cultivation practices. Scientia Horticulturae. 240: 430-439. doi: 10.1016/j.scienta.2018.06.022

Garruña-Hernández, R.; Latournerie-Moreno, L.; Ayala-Garay, O.; Santamaría, J. M.; Pinzón-López, L. (2014). Acondicionamiento pre-siembra: Una opción para incrementar la germinación de semillas de chile habanero (Capsicum chinense Jacq.). Agrociencia. 48(4): 413-423.

González-Amaya, L. J.; Pita, B. E.; Pinzón-Sandoval, E. H.; Cely, G. E.; Serrano, P. A. (2018). Efecto de tratamientos pregerminativos en semillas de Dianthus barbatus L. cv. ‘Purple’ bajo condiciones controladas. Revista de Ciencias Agrícolas. 35(1): 58-68. doi: 10.22267/rcia.183501.83

Hossain, H.; Rahman, M.; Alam, M.; Singh, R. (2015). Mapping of quantitative trait loci associated with reproductive stage salt tolerance in rice. Journal of Agronomy and Crop Science. 201(1): 17-31. doi: 10.1111/jac.12086

Hozayn, M.; Ahmed, A. A.; El-Saady, A. A.; Abd-Elmonem, A. A. (2019). Enhancement in germination, seedling attributes and yields of alfalfa (Medicago sativa, L.) under salinity stress using static magnetic field treatments. Eurasian Journal of Biosciences. 13(2): 369-378.

Jan, M.; ul Haq, M. A.; ul Haq, T.; Ali, A.; Hussain, S.; Ibrahim, M. (2020). Protective effect of potassium application on NaCl induced stress in tomato (Lycopersicon esculentum L.) genotypes. Journal of Plant Nutrition. 43(13): 2067-2079. doi: 10.1080/01904167.2020.1766071

Jiang, X.-W.; Zhang, C.-R.; Wang, W.-H.; Xu, G.-H.; Zhang, H.-Y. (2020). Seed priming improves seed germination and seedling growth of Isatis indigotica Fort. under salt stress. HortScience. 55(5): 647-650. doi: 10.21273/HORTSCI14854-20

José, A. C.; Silva, N. C. N.; Faria, J. M. R.; Pereira, W. V. S. (2016). Influence of priming on Eucalyptus spp seeds’ tolerance to salt stress. Journal of Seed Science. 38(4): 329-334. doi: 10.1590/2317-1545v38n4165060

Kalhor, M. S.; Aliniaeifard, S.; Seif, M.; Asayesh, E. J.; Bernard, F.; Hassani, B.; Li, T. (2018). Enhanced salt tolerance and photosynthetic performance: Implication of ɤ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. Plant Physiology and Biochemistry. 130: 157-172. doi: 10.1016/j.plaphy.2018.07.003

Kodikara, K. A. S.; Jayatissa, L. P.; Huxham, M.; Dahdouh-Guebas, F.; Koedam, N. (2018). The effects of salinity on growth and survival of mangrove seedlings changes with age. Acta Botanica Brasilica. 32(1): 37-46. doi: 10.1590/0102-33062017abb0100

Leal, C. C. P.; Dantas, N. B. L.; Torres, S. B.; Vale, A. A. M.; Freitas, R. M. O. (2019). Initial development of Combretum leprosum Mart. seedlings irrigated with saline water of different cationic natures. Revista Ciência Agronômica. 50(2): 300-306. doi: 10.5935/1806-6690.20190035

Lopes, C. A.; Carvalho, M. L. M.; Guimarães, R. M.; Oliveira, A. M. S.; Andrade, D. B. (2019). Sodium hypochlorite in the priming of tobacco seeds. Journal of Seed Science. 41(1): 108-111. doi: 10.1590/2317-1545v41n1211719

Lopez del Egido, L.; Toorop, P. E.; Lanfermeijer, F. C. (2018). Seed priming improves germination of Arabis alpina under thermo-inhibiting conditions. Seed Science and Technology. 46(2): 285-303. doi: 10.15258/sst.2018.46.2.10

Marinho, J. L.; Costa, D. S.; Carvalho, D. U.; Cruz, M. A.; Zucareli, C. (2019). Evaluation of vigor and tolerance of sweet corn seeds under hypoxia. Journal of Seed Science. 41(2): 180-186. doi: 10.1590/2317-1545v41n2209568

Mavi, K. (2018). Evaluation of organic priming to improve the emergence performance of domesticated Capsicum species. Seed Science and Technology. 46(1): 131-137. doi: 10.15258/sst.2018.46.1.13

Mekawy, A. M. M.; Abdelaziz, M. N.; Ueda, A. (2018). Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiology and Biochemistry. 130: 94-104. doi: 10.1016/j.plaphy.2018.06.036

Monteiro, T. M. A.; Santos, P. C. M.; Silva, C. S.; Silva, D. E. M.; Pereira, B. W. F.; França, S. K. S.; Júnior Silva, J. F.; Freitas, J. M. N. (2008). Ação do nitrato de potássio na germinação de sementes de pimenta de cheiro. Horticultura Brasileira. 26(2 Supplement): S2411-S2414.

Moreno, C.; Seal, C. E.; Papenbrock, J. (2017). Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. Journal of Agronomy and Crop Science. 204(1): 40-48. doi: 10.1111/jac.12242

Nunes, L. R. L.; Pinheiro, P. R.; Cabral, F. A. S.; Silva, J. B.; Dutra, A. S. (2019). Ascorbic acid of cowpea seeds under saline stress. Journal of Seed Science. 41(4): 441-451. doi: 10.1590/2317-1545v41n4222276

Oliveira, C. E. S.; Steiner, F. (2017). Potassium nitrate priming to mitigate the salt stress on cucumber seedlings. Scientia Agraria Paranaensis. 16(4): 454-462. doi: 10.18188/1983-1471/sap.v16n4p454-462

Oliveira, C. E. S.; Steiner, F.; Zuffo, A. M.; Zoz, T.; Alves, C. Z.; Aguiar, V. C. B. (2019). Seed priming improves the germination and growth rate of melon seedlings under saline stress. Ciência Rural. 49(7): e20180588. doi: 10.1590/0103-8478cr20180588

Oliveira, F. A.; Medeiros, J. F.; Linhares, P. S. F.; Alves, R. C.; Medeiros, A. M. A.; Oliveira, M. K. T. (2014). Produção de mudas de pimenta fertirrigadas com diferentes soluções nutritivas. Horticultura Brasileira. 32(4): 458-463. doi: 10.1590/S0102-053620140000400014

Oliveira, J. L. S.; Silva, E. (2019). Efeitos do estresse osmótico no desenvolvimento inicial de Phaseolus vulgaris L. CESUMAR. 21(1): 55-60. doi: 10.17765/1518-1243.2019v21n1p55-60

Öner, F.; Kirli, A. (2018). Effects of salt stress on germination and seedling growth of different bread wheat (Triticum aestivum L.) cultivars. Akademik Ziraat Dergisi. 7(2): 191-196. doi: 10.29278/azd.476365

Pérez-Gutiérrez, A.; Garruña, R.; Vázquez, P.; Latournerie-Moreno, L.; Andrade, J. L.; Us-Santamaría, R. (2017). Growth, phenology and chlorophyll fluorescence of habanero pepper (Capsicum chinense Jacq.) under water stress conditions. Acta Agronómica. 66(2): 214-220. doi: 10.15446/acag.v66n2.55897

Rady, M. O. A.; Semida, W. M.; El-Mageed, T. A. A.; Hemida, K. A.; Rady, M. M. (2018). Up-regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress. Scientia Horticulturae. 240: 614-622. doi: 10.1016/j.scienta.2018.06.069

Sá, F. V. S.; Souto, L. S.; Paiva, E. P.; Torres, S. B.; Oliveira, F. A. (2019). Initial development and tolerance of pepper species to salinity stress. Revista Caatinga. 32(3): doi: 826-833. 10.1590/1983-21252019v32n327rc

Rashed, M. R. U.; Roy, M. R.; Paul, S. K.; Haque, M. M. (2016). In vitro screening of salt tolerant genotypes in tomato (Solanum lycopersicum L.). Journal of Horticulture. 3(4): 1000186. doi: 10.4172/2376-0354.1000186

Samsampour, D.; Sadeghi, F.; Asadi, M.; Ebrahimzadeh, A. (2018). Effect of nitric oxide (NO) on the induction of callus and antioxidant capacity of Hyoscyamus niger under in vitro salt stress. Journal of Applied Botany and Food Quality. 91: 24-32. doi: 10.5073/JABFQ.2018.091.004

Shahzad, M.; Usman, H.; Ahmad, R.; Khan, S. A.; Saqib, Z. A.; Mühling, K. H. (2019). Sodium in the leaf apoplast does not affect growth of maize (Zea mays L.) under saline field conditions. Journal of Applied Botany and Food Quality. 92: 117-122. doi: 10.5073/JABFQ.2019.092.016

Shihab, M. O.; Hamza, J. H. (2020). Seed priming of sorghum cultivars by gibberellic and salicylic acids to improve seedling growth under irrigation with saline water. Journal of Plant Nutrition. 43(13): 1951-1967. doi: 10.1080/01904167.2020.1766066

Shirazi, N. A.; Bazrafshan, F.; Alizadeh, O.; Ordookhani, K.; Langroodi, A. S. (2019). Evaluation of canola germination characteristics under priming condition. Eurasian Journal of Biosciences. 13(2): 681-686.

Silva, A. L.; Pinheiro, D. T.; Borges, E. E. L.; Silva, L. J.; Dias, D. C. F. S. (2019). Effect of cyanide by sodium nitroprusside (SNP) application on germination, antioxidative system and lipid peroxidation of Senna macranthera seeds under saline stress. Journal of Seed Science. 41(1): 86-96. doi: 10.1590/2317-1545v41n1213725

Silva, N. C. Q.; Souza, G. A.; Pimenta, T. M.; Brito, F. A. L.; Picoli, E. A. T.; Zsögön, A.; Ribeiro, D. M. (2018). Salt stress inhibits germination of Stylosanthes humilis seeds through abscisic acid accumulation and associated changes in ethylene production. Plant Physiology and Biochemistry. 130: 399-407. doi: 10.1016/j.plaphy.2018.07.025

Souza, M. O.; Pelacani, C. R.; Willems, L. A. J.; Castro, R. D.; Hilhorst, H. W. M.; Ligterink, W. (2016). Effect of osmopriming on germination and initial growth of Physalis angulata L. under salt stress and on expression of associated genes. Anais da Academia Brasileira de Ciências. 88(Supplement 1): 503-516. doi: 10.1590/0001-3765201620150043

Stefanello, R.; Viana, B. B.; Goergen, P. C. H.; Neves, L. A. S.; Nunes, U. R. (2019). Germination of chia seeds submitted to saline stress. Brazilian Journal of Biology. 80(2): 285-289. doi: 10.1590/1519-6984.192140

Steiner, F.; Zuffo, A. M.; Busch, A.; Sousa, T. O.; Zoz, T. (2019). Does seed size affect the germination rate and seedling growth of peanut under salinity and water stress?. Pesquisa Agropecuária Tropical. 49: e54353. doi: 10.1590/1983-40632019v4954353

Steiner, F.; Zuffo, A. M.; Oliveira, C. E. S.; Honda, G. B.; Machado, J. S. (2018). Potassium nitrate priming mitigates salt stress on wheat seedlings. Revista Ciências Agrárias. 41(4): 989-1000. doi: 10.19084/RCA16135

Talhouni, M.; Sönmez, K.; Kiran, S.; Beyaz, R.; Yildiz, M.; Kuşvuran, Ş.; Ellialtioğlu, Ş. Ş. (2019). Comparison of salinity effects on grafted and non-grafted eggplants in terms of ion accumulation, MDA content and antioxidative enzyme activities. Advances in Horticultural Science. 33(1): 87-95. doi: 10.13128/ahs-23794

Tanveer, M.; Shahzad, B.; Sharma, A.; Biju, S.; Bhardwaj, R. (2018). 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiology and Biochemistry. 130: 69-79. doi: 10.1016/j.plaphy.2018.06.035

Vendruscolo, E. P.; Seleguini, A. (2020). Effects of vitamin pre-sowing treatment on sweet maize seedlings irrigated with saline water. Acta Agronómica. 69(1): 20-25. doi: 10.15446/acag.v69n1.67528

Wu, L.; Huo, W.; Yao, D.; Li, M. (2019). Effects of solid matrix priming (SMP) and salt stress on broccoli and cauliflower seed germination and early seedling growth. Scientia Horticulturae. 255: 161-168. doi: 10.1016/j.scienta.2019.05.007

Yadav, P. V.; Kumari, M.; Ahmed, Z. (2011). Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in Capsicum. Research Journal of Seed Science. 4(3): 125-136. doi: 10.3923/rjss.2011.125.136

Yuan, Y.; Zhong, M.; Du, N.; Shu, S.; Sun, J.; Guo, S. (2019). Putrescine enhances salt tolerance of cucumber seedlings by regulating ion homeostasis. Environmental and Experimental Botany. 165: 70-82. doi: 10.1016/j.envexpbot.2019.05.019

Zamljen, T.; Zupanc, V.; Slatnar, A. (2020). Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq. Agricultural Water Management. 234: 106104. doi: 10.1016/j.agwat.2020.106104

Zhang, L.; Tian, C.; Wang, L. (2018). Cold stratification pretreatment improves salinity tolerance in two wheat varieties during germination. Seed Science and Technology. 46(1): 87-92. doi: 10.15258/sst.2018.46.1.08

Downloads

Published

2021-09-29

How to Cite

da Silva, M. G., de Oliveira Gondim, A. R., Feitoza Ledo, E. R., Francilino, A. H., da Silva, Y., & Gheyi, H. R. (2021). Response of two pepper species (Capsicum chinense Jacq. and Capsicum frutescens L.) to salt stress at germination stage in Northeast Brazil. Revista De Ciencias Agrícolas, 38(2), 75–88. https://doi.org/10.22267/rcia.213802.161