Evaluation of phosphate solubilization from phosphoric rock via Aspergillus niger and Penicillium sp

Keywords: sustainable agriculture, land resources, liquid fertilizers


Phosphoric rock is the main source of phosphorus used in fertilizers. In most cases, it is applied alone or mixed with other nutrients in water; however, its low solubility means that it is not used efficiently, causing excess phosphorus to be wasted, generating economic expenses for the farmer or causing problems of eutrophication in water sources. In this article, different mixtures of solubilizing fungi with coffee pulp stillage were studied to improve the solubility of phosphates in phosphate rock. Since despite that in different studies is clear its role in the solubilization of P, its application on floors is still done without any additional treatment. Phosphoric rock samples were obtained from the municipality of Aipe (Huila) and it were treated for 6 weeks with coffee pulp stillage (Coffea arabica) and inoculums of Aspergillus niger and Penicillium sp, pH and temperature controlled.  The fungus species were obtained from environmental media on PDA culture, then it was isolated and identified on MEA culture, in according to standard morphologic identification methods.  Aspergillus niger showed greater mycelial growth in the stillage and a higher concentration of phosphates dissolved in the aqueous phase (72 ± 31 M) compared to Penicillium sp.  The mixture of the two fungi in the treatments allowed to obtain the highest percentage of phosphates (17.8% of the phosphate soluble in H2SO4 40% v/v). 












Download data is not yet available.


Beyene, A.; Kassahun, Y.; Addis, T.; Assefa, F.; Amsalu, A.; Legesse, W.; Triest. L, (2012). The impact of traditional coffee processing on river water quality in Ethiopia and the urgency of adopting sound environmental practices. Environ. Monit. Assess. 184(11): 7053-7063. doi: http://dx.doi.org/10.1007/s10661-011-2479-7

Cássia, U.; Oliveira, G.; Morena, N.; Leal, J.; Ribeiro, I.; Rogério, M.; Dutra, M. (2014). Fluoride-tolerant mutants of Aspergillus niger show enhanced phosphate solubilization capacity. PLOS ONE. 9(10): 1-9. doi: http://dx.doi.org/10.1371/journal.pone.0110246

Chunquiao, X.; Fang, Y.; Chi, R. (2015). Phosphate solubilization in vitro by isolated Aspergillus niger and Aspergillus carbonarius. Res. Chem. Intermed. 41(5): 2867 -2878. doi: http://dx.doi.org/10.1007/s11164-013-1395-6

Cordell, D. (2010). The Story of Phosphorus: Sustainability implications of global phosphorus scarcity for food security (Doctoral dissertation). Sydney: University of Technology Sydney. 139p.

Cordell, D.; Drangert, J. O.; White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environ. Chang. 19(2): 292-305. doi: http://dx.doi.org/10.1016/j.gloenvcha.2008.10.009

Edixhoven, J. D.; Gupta, J.; Savenije, H. H. G. (2013). Recent revisions of phosphate rock reserves and resources: reassuring or misleading? An in-depth literature review of global estimates of phosphate rock reserves and resources. Earth Syst. Dynam. Discuss. 4 (2):1005-1034. doi: http://dx.doi.org/10.5194/esdd-4-1005-2013

Gilbert, N. (2009). Environment: the disappearing nutrient. Nature News. 461(7265): 716-718. doi: http://dx.doi.org/10.1038/461716a

Goldstein; A.H., Rogers; R.D., Mead; G. (1993). Mining by microbe. Bio. Technol. 11: 1250-1254.

Harvey, D. (2000). Modern Analytical Chemistry. Boston: McGraw-Hill Companies, Inc.

Ivanova, R. P.; Bojinova, D.Y.; Gruncharov, I. N.; Damgaliev, D. L. (2006). The solubilization of rock phosphate by organic acids. Phosphorus Sulfur. 181(11): 2541-2554. doi: http://dx.doi.org/10.1080/10426500600758399

Iyyappan, J.; Bharathiraja, B.; Baskar, G.; Jayamuthunagai, J.; Barathkumar, S. (2018). Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. Bioresour. Technol. 251: 264-267. doi: http://dx.doi.org/10.1016/j.biortech.2017.12.055

Kaur, G.; Reddy, M. S. (2017). Improvement of crop yield by phosphate-solubilizing Aspergilluss species in organic farming. Arch. Agron. Soil Sci. 63 (1):24-34. doi: http://dx.doi.org/10.1080/03650340.2016.1182161

Li, H.; Liu, J.; Li, G.; Shen, J.; Bergstrom, L.; Zhang, F. (2015). Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio. 44 (2): 274-285. doi: http://dx.doi.org/10.1007/s13280-015-0633-0

Lizarazo, P. X.; Gómez, D. (2015). Microbiota rizosférica de Espeletia spp. de los páramos de Santa Inés y de Frontino-Urrao en Antioquia - Colombia. Acta Biol. Col, 20 (1): 175-182. doi: http://dx.doi.org/10.15446/abc.v20n1.42827

Mai, H. T. N.; Lee, K. M.; Choi, S.S. (2016). Enhanced oxalic acid production from corncob by a methanol-resistant strain of Aspergillus niger using semi solid-sate fermentation. Process Biochem. 51 (1): 9-15. doi: http://dx.doi.org/10.1016/j.procbio.2015.11.005

Mathworks. (2019a). Kruskal-Wallis test - MATLAB kruskalwallis. Recuperado de https://www.mathworks.com/help/stats/kruskalwallis.html#btv4oqy-6

Mathworks. (2019b). Multiple comparison test - MATLAB multcompare. Recuperado de https://www.mathworks.com/help/stats/multcompare.html?searchHighlight=multcompare&s_tid=doc_srchtitle

Mathworks. (2019c). Multiple-sample tests for equal variances - MATLAB vartestn. Recuperado de https://www.mathworks.com/help/stats/vartestn.html#btuo1pv

Mathworks. (2019d). One-way analysis of variance - MATLAB anova1. Recuperado de https://www.mathworks.com/help/stats/anova1.html

Mendes, G. D. O.; da Silva, N. M. R.M.; Anastácio, T. C.; Vassilev, N. B.; Ribeiro Jr, J. I.; da Silva, I. R.; Costa, M. D. (2015). Optimization of Aspergillus niger rock phosphate solubilization in solid‐state fermentation and use of the resulting product as a P fertilizer. Microbial Biotechnol. 8(6): 930-939.

Pérez, C, A.; de la Ossa, J.; Montes, V. D. (2012). Hongos Solubilizadores de Fosfatos en fincas ganaderas del departamento de Sucre. RECIA 4(1): 35-45. doi: http://dx.doi.org/10.24188/recia.v4.n1.2012.263

Peterson, S, W.; Vega, F. E.; Posada, F.; Nagai, C. (2005). Penicillium coffeae, a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P, fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. Mycologia, 97(3): 659-666. doi: https://doi.org/10.1080/15572536.2006.11832796

Pineda, M. B. (2015). Hongos solubilizadores de fosfato en suelo de páramo cultivado con papa [Solanum tuberosum]. Ciencia en Desarrollo. 5(2):145-154. doi: http://dx.doi.org/10.19053/01217488.3669

Posso, E. J. S.; de Prager, M. S. (2017). Production of organic acids by rhizosphere microorganisms isolated from a Typic Melanudands and its effects on the inorganic phosphates solubilization. Acta Agron. 66(2): 241 -247. doi: http://dx.doi.org/10.15446/acag.v66n2.56148

Puerta, G.; Ríos, S. 2011. Composición Química del mucílago de café según el tiempo de fermentación y refrigeración. Cenicafe. 62 (2):23-40.

Rashid, M.; Khalil, S.; Ayub, N.; Alam, S.; Latif, f. (2004). Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak. J. Biol. Sci. 7 (2):187-196.

Restrepo G. M.; Marulanda, S.; de la Fe, Y.; Díaz, A.; Lucia, V.; Hernández, A. (2015). Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. CENIC. 46(1): 63 -76.

Serrat, M.; la Dé, D.; Daniel, Á.; la Fé, D.; Alberto, J.; Montero, C. (2018). Extracción y caracterización de pectina de pulpa de café de la variedad Robusta. Revista Cubana de Química. 30 (3):522-538.

Silva, C. F. et al. "Evaluation of a potential starter culture for enhance quality of coffee fermentation". World J Microbiol Biotechnol. 2013, 29, 235–247. ISSN: 0959-3993.

Stutter, M. I.; Shand, C. A.; George, T. S.; Blackwell, M. S. A.; Bol, R.; Mackay, R. L.; Haygarth, P. M. (2012). Recovering phosphorus from soil: A root solution? Environ. Sci. Technol. 46(4): 1977-1978. doi: http://dx.doi.org/10.1021/es2044745

USGS - United States Geological Survey. (2017). Mineral commodity summaries 2017. Reston, VA: U.S. Geological Survey, 202 p. doi: https://doi.org/10.3133/70180197

Vera, D. F.; Pérez, H.; Valencia, H. (2002). Aislamiento de hongos solubilizadores de fosfatos de la rizósfera de Arazá (Eugenia stipitata, Myrtaceae). Acta Biol. Col. 7(1): 33-40. doi: http://dx.doi.org/10.15446/abc

Visagie, C. M.; Houbraken, J.; Frisvad, J. C.; Hong, S. B.; Klaassen, C. H. W.; Perrone, G.; Samson, R.A. (2014). Identification and nomenclature of the genus Aspergilluss. Stud. Mycol. 78 (1): 343-371. doi: http://dx.doi.org/10.1016/j.simyco.2014.09.001

Wakelin, S. A.; Warren, R. A.; Harvey, P.R.; Ryder, M. H. (2004). Phosphate solubilization by Penicillium sp, closely associated with wheat roots. Biol. Fert. Soils, 40 (1): 36-43. doi: https://doi.org/10.1007/s00374-004-0750-6

Walan, P.; Davidsson, S.; Johansson, S.; Höök, M. (2014). Phosphate rock production and depletion: Regional disaggregated modeling and global implications. Resour. Conserv. Recy. 93: 178-187. doi: http://dx.doi.org/10.1016/j.resconrec.2014.10.011

Yin, Z.; Shi, F.; Jiang, H.; Roberts, D. P.; Chen, S.; Fan, B. (2015). Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil. Can J. Microbiol. 61(12): 913-923. doi: https://doi.org/10.1139/cjm-2015-0358

Zapata, F.; Roy, R.N. (2007). Utilización de las rocas fosfóricas para una agricultura sostenible. Roma: Organización de las Naciones Unidas para la agricultura y la alimentación y del organismo internacional de Energía Atómica. 73p.
How to Cite
Argotte, L., Barreiro, O., Cerquera, N., & Castro, H. T. (2020). Evaluation of phosphate solubilization from phosphoric rock via Aspergillus niger and Penicillium sp. Revista De Ciencias Agrícolas, 37(2). Retrieved from https://revistas.udenar.edu.co/index.php/rfacia/article/view/6118