Biofertilizer potential of digestates from small-scale biogas plants in the Cuban context

Keywords: Biodigester, digestate, fertilizer, irrigation water, nutrient, organic matter


The residual sludge from anaerobic digestion known as digestate has been used as a valuable biofertilizer, but the effect of the substrate, the configuration of the reactor and the operating parameter changes the quality and amounts of nutrients in it. Therefore, it is necessary to know its potential characteristic of fertilizer to apply it correctly in crops of national interest. The aim of this work was to characterize the digestate generated from three biodigester technologies (fixed dome, floating drum and tubular) and three substrates: swine manure, cow manure, and co-digestion of swine and cow manure obtained in the province of Sancti Spíritus, Cuba, in terms of nutrient and matter content. For this purpose, stratified statistical sampling was carried out to ensure representative samples and descriptive statistical techniques were used to process the analyses. The digestate was divided into liquid and solid fractions according to the dry matter content (15%). The content of organic matter and ash represented around 50% for both fractions, which enhances its value as a soil conditioner. The nutrient content of both fractions showed good fertilizing properties, having a nutrient ratio (NH4+:PO43-:K+:SO42-:Mg2+:Ca2+) in the liquid (0.002:0.80:0.10:1.00:0.89:0.93) and solid (0.0003:0.96:0.002:1.00:0.52:0.50) fractions, that would contribute to the return nutrients to the soil. The quality of the liquid fraction as irrigation water was assessed as good, according to the relationship between the concentration of the nutrients (Ca, Mg, Na and K) and hardness. Further research is needed on the appropriate dosage for the different crops, and its contribution to sustainable agriculture in the Cuban context.


Download data is not yet available.


Aboukarima, A.M., Al-Sulaiman, M.A. & Marazky, M.S.A.E. (2018). Effect of sodium adsorption ratio and electric conductivity of the applied water on infiltration in a sandy-loam soil. Water SA, 44(1): 105-110. doi: 10.4314/wsa.v44i1.12

Akhiar, A., Battimelli, A., Torrijos, M. & Carrere, H. (2017). Comprehensive characterization of the liquid fraction of digestates from full-scale anaerobic co-digestion. Waste management, 59: 118–128. doi: 10.1016/j.wasman.1016.11.005

Alburquerque, J.A., De la Fuente, C., Campoy, M., Carrasco, L., Nájera, I., Baixauli, C., Caravaca, F., Roldán, A., Cegarra, J. & Bernal, M.P. (2012). Agricultural use of digestate for horticultural crop production and improvement of soil properties. European Journal of Agronomy, 43: 119–128. doi: 10.1016/j.eja.2012.06.001

Alkhalidi, A., Khawaja, M.K., Amer, K.A., Nawafleh, A.S. & Al-Safadi, M.A. (2019). Portable Biogas Digesters for Domestic Use in Jordanian Villages. Recycling, 4(2), 21. doi: 10.3390/recycling4020021

Almaguel, R.E., Cruz, E. & Piloto, J.L. (2016). Aceptabilidad y patrón de consumo de cerdos en crecimiento-ceba alimentados con diferentes niveles de sustitución del maiz de la dieta por alimento ensilado cubano. Revista computarizada de producción porcina, 23(2): 137-146.

Angelidaki, I., Ellegaard, L. & Ahring, B.K. (2003). Applications of the anaerobic digestion process. In Biomethanation II, 82: 1–33. doi: 10.1007/3-540-45838-7_1

APHA. (2012). Standard Methods for the Examination of Water and Wastewater. American Public Health Association., 22nd ed. Washington D.C.: American Water Works Association, Water Environment Federation and American Public Health Association.

Bermejo, G., Ellmer, F. & Krück, S. (2010). Use of dry and wet digestates from biogas plants as fertilizer in plant production. In 14th Ramiran Conference. Treatment and Use of Organic Residues in Agriculture, Lisboa, Portugal

Chen, J., Michel Jr, F.C., Sreevatsan, S., Morrison, M. & Yu, Z. (2010). Occurrence and persistence of erythromycin resistance genes (erm) and tetracycline resistance genes (tet) in waste treatment systems on swine farms. Microbial ecology, 60(3): 479–486. doi: 10.1007/s00248-010-9634-5

Del Valle, H. (1992). Practicas de Relaciones Agua-Suelo-Atmosfera. México: Editorial Universidad Autónoma de Chapingo. 210p.

Diacono, M., Persiani, A., Testani, E., Montemurro, F. & Ciaccia, C. (2019). Recycling Agricultural Wastes and By-products in Organic Farming: Biofertilizer Production, Yield Performance and Carbon Footprint Analysis. Sustainability, 11, 3824. doi: 10.3390/su11143824

Drosg, B., Fuchs, W., Al Seadi, T., Madsen, M. & Linke, B. (2015). Nutrient Recovery by Biogas Digestate Processing. IEA Bioenergy Dublin, 711. 39p.

Fageria, N. K & Moreira, A. (2011). The Role of Mineral Nutrition on Root Growth of Crop Plants. Advances in agronomy, 110: 251-331. doi: 10.1016/B978-0-12-385531-2.00004-9

Franchino, M., Tigini, V., Varese, G.C., Sartor, R.M. & Bona, F. (2016). Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate. Science of The Total Environment, 569: 40–45. doi: 10.1016/j.scitotenv.2016.06.100

Hernández, M. F., Prieto, C. R. H., Sonia, C., González, J., & Sanchez, J. V. (2008). Los biodigestores como aportadores de energía y mejoradores del suelo. Cuba, Monograph. 38p.

Huang, X., Yun, S., Zhu, J., Du, T., Zhang, C. & Li, X. (2016). Mesophilic anaerobic co-digestion of aloe peel waste with dairy manure in the batch digester: Focusing on mixing ratios and digestate stability. Bioresource technology, 218: 62–68. doi: 10.1016/j.biortech.2016.06.070

Kalakodio, L., Alepu, O.E. & Zewde, A.A. (2017). Application of techniques derived from the study of soil organic matter to characterize the organic matter during the composting of various materials-A Review. Journal of Pollution Effect and Control, 5: 184–94. doi: 10.4176/2375-4397.1000184

Kryvoruchko, V., Machmüller, A., Bodiroza, V., Amon, B. & Amon, T. (2009). Anaerobic digestion of by-products of sugar beet and starch potato processing. Biomass and Bioenergy, 33: 620–627. doi: 10.1016/j.biombioe.2008.10.003

Kuusik, A., Pachel, K., Kuusik, A. & Loigu, E. (2017). Possible agricultural use of digestate. Proceedings of the Estonian academy of sciences, 66: 64–74. doi: 10.3176/proc.2017.1.10

Lesch, S.M. & Suarez, D.L. (2009). Technical Note: A Short Note on Calculating the Adjusted SAR Index. Transactions of the ASABE, 52: 493–496.

López Dávila, E., Calero Hurtado, A., Gómez León, Y., Unday, G., Z, C., Deborah Henderson, C. & Janet Jimenez, C. (2017a). Agronomic effect of the biosolid in tomato cultivation (Solanum lycopersicum): biological control of Rhizoctonia solani. Cultivos Tropicales, 38: 13–23.

López Dávila, E., Unday, Z.G., Henderson, D., Hurtado, A.C. & Hernández, J.J. (2017b). Uso de efluente de planta de biogás y microorganismos eficientes como biofertilizantes en plantas de cebolla (Allium cepa L., cv. ‘Caribe-71’), 38(4): 7-14

Lukehurst, C.T., Frost, P. & Seadi, T.A. (2010). Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy, 34. 24p.

Makádi, M., Tomócsik, A. & Orosz, V. (2012). Digestate: a new nutrient source–review. Biogas, Sunil Kumar, IntechOpen. doi: 10.5772/31355.

Marcato, C.E., Pinelli, E., Pouech, P., Winterton, P. & Guiresse, M. (2008). Particle size and metal distributions in anaerobically digested pig slurry. Bioresource Technology, 99: 2340–2348. doi: 10.1016/j.biortech.2007.05.013

Menardo, S., Gioelli, F. & Balsari, P. (2011). The methane yield of digestate: effect of organic loading rate, hydraulic retention time, and plant feeding. Bioresource technology, 102: 2348–2351. doi: 10.1016/j.biortech.2010.10.094

Montalvo, S & Guerrero, L. (2003). Tratamiento Anaerobio de Residuos. 1st ed. Chile: Universidad Técnica Federico Santa María.

Negrin Brito, A. & Jiménez Peña, Y. (2012). Evaluación del efecto agronómico del biosólido procedente de una planta de tratamiento por digestión anaerobia de residuales pecuarios en el cultivo del frijol (Phaseolus vulgaris L). Cultivos Tropicales, 33: 13–19.

Olías, M, Cerón, J & Fernández, I. (2005). Sobre la utilización de la clasificación de las aguas de riego del US Laboratory Salinity (USLS). Geogaceta, 111–113.

Quispe Mamani, J.G. (2016). Evaluación de la Calidad fisico- química y bacteriológica del agua de riego de la Estación Experimental de Cota Cota. Pregrado, La Paz, Bolivia: Universidad Mayor de San Andres.

Risberg, K., Cederlund, H., Pell, M., Arthurson, V. & Schnürer, A. (2017). Comparative characterization of digestate versus pig slurry and cow manure – Chemical composition and effects on soil microbial activity. Waste Management, 61: 529–538. doi: 10.1016/j.wasman.2016.12.016

Rossi, L & Mantovi, P. (2012). In: Centro Ricerche Produzioni Animali– CRPA.

Shepherd, J.G., Sohi, S.P. & Heal, K.V. (2016). Optimising the recovery and re-use of phosphorus from wastewater effluent for sustainable fertiliser development. Water research, 94: 155–165. doi: 10.1016/j.watres.2016.02.038

Sosa, R., Cruz, T. & de la Fuente, J.L. (2014). Diversification and overviews of anaerobic digestion of Cuban pig breeding. Cuban Journal of Agricultural Science, 48: 67–72.

Suárez, J.L.R., Avendaño, C.L.V., González, J.M. & Pérez, A.C. (2019). Evaluation of poultry manure and goat cheese whey anaerobic co-digestion. Spanish journal of agricultural research, 17, 302.

Suárez-Hernández, J., Sosa-Cáceres, R., Martínez-Labrada, J., Curbelo-Alonso, A., Figueredo-Rodríguez, T. & Cepero-Casas, C. (2019). Evaluation of the biogas production potential in Cuba. Pastos y Forrajes, 41(2): 79-85

Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S. & Adani, F. (2010). Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere, 81: 577–583. doi: 10.1016/j.chemosphere.2010.08.034
How to Cite
Odales, L., López, E., López, L., Jiménez, J., & Barrera, E. (2020). Biofertilizer potential of digestates from small-scale biogas plants in the Cuban context. Revista De Ciencias Agrícolas, 37(2). Retrieved from