Soils erosion in pineapple (Ananas comosus L. Merr) producing areas

Keywords: Agricultural practices, slope, soil conservation, soil degradation, USLE


Pineapple is the third most-produced tropical fruit worldwide; however, it is a crop that, due to its management, can lead to the generation and intensification of processes such as soil erosion. This paper presents a bibliographic review about the factors that influence erosion in soils dedicated to pineapple cultivation, addressing papers reported in the international literature, subsequently positioning it in the context of the main producing municipalities presented in the Valle del Cauca region. The available research covers the last four decades, where losses are estimated between 35 and 178t ha-1year-1; the topography, the conditions of the access roads, some management practices, and edaphic properties related to erodibility stand out among the most critical factors. Finally, based on the climatic, edaphological, and topographic traits reported in the literature for the main pineapple producing region of Valle del Cauca, and considering current management practices, it is found that this area can present very high erosion values since the soils are susceptible, and the slopes are steep, some of them even higher than 70%. Therefore, it is suggested to carry out more research to determine the erodibility and erosivity of these areas to know the potential degradation index, which will function as a valuable tool for decision-making, the generation of management, and conservation recommendations of these soils.


Download data is not yet available.
Visits to the article summary page: 478


Abbasi, M. A.; Jamal, T. (1999). Soil Loss and Runoff Measurement From Banana-Pineapple intercropping System. Pakistan Journal of Biological Sciences. 2(3): 689-692. doi: 10.3923/pjbs.1999.689.692

Abu Bakar, B. H.; Ishak, A.J.; Shamsuddin, R.; Wan Hassan, W. Z. (2013). Ripeness level classification for pineapple using RGB and HSI colour maps. Journal of Theoretical and Applied Information Technology. 57(3): 587–593.

Afandi, D.W.; Novpriansyah, H (2020). Soil erosion at pineapple plantations in Indonesia under the climate change issue. Recovered from,ton%2Fha%2Fyear)

Aguirre, A.; López, L.I.; Bolaños, F.V.; González, D.F.; Buitrago, O. (2017). Perception of landscape, water and ecosystems in the watershed of the Dagua river, Valle del Cauca, Colombia. Geographic perspective. 22(1): 109-126. doi: 10.19053/01233769.5402

Agudelo, C. A.; Torrente, A.; Vargas, A. (2015). Comparative evaluation of soil loss in the biological corridor between the Purace National park and the guacharos cave in Huila. Revista Colombiana de Investigaciones Agroindustriales. 2(1): 41-52. doi:

AGRONET - Red de información y comunicación del sector agropecuario colombiano (2019). Statistics at home. Area, Production, Performance and Municipal Participation on the Department's website by Cultivation. Recovered from

Alcaldía municipal de Dagua. (2001). Plan de Ordenamiento Territorial Dagua Valle del Cauca 2001 - 2009: POT Dagua Valle del Cauca 2001 - 2009. Recovered from

Alarcón, S.; Reyes, A. (2013). Erodibility Assessment for Typic Dystrudepts, Typic Hapludands, and Andic dystrudepts by using a rain simulator in the watershed La Centella (Dagua- Valle del Cauca). Natural Resources and Environmental Engineering. 12:49-57.

Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. (2019). Using the USLE: Chances, challenges, and limitations of soil erosion modeling. International Soil and Water Conservation Research. 7(3): 203-225. doi:

Altendorf, S. (2017). Perspectivas mundiales de las principales frutas tropicales. Perspectivas, retos y oportunidades a corto plazo en un mercado global pujante. Recovered from

Alvarez, M.; Peña, W. (2013). Estimation of erosive levels in soils with pineapple cultivation in Sarapiqui. Scientific repertoire. 16(1): 3-11. doi:

Alvarado, K.; López, V.; Castillo, J. (2011). Pérdida de suelo por erosión hídrica en diferentes sistemas de producción con papa Solanum tuberosum L. Revista de Ciencias Agrícolas. 28(1): 64-72.

Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. (2015). Soil and human security in the 21st century. Science. 348(6235): 1261071. doi: 10.1126/science.1261071

ASOHOFRUCOL - Colombia Horticultural Association.(2018). Pineapple production in Colombia would reach 1.18 million tons at the end of the year. Recovered from

Cardona, F.; Ávila, A. J.; Carvajal. Y; Jiménez, H (2014), “Trends into rainfall time series of two andes basins of Valle del Cauca (Colombia)”. TecnoLógicas. 17(32): 85-95.

Castro, A. F.; Lince, L.A.; Riaño, O. (2017). Determination of the risk to the potential erosion by water in the coffee zone of Quindio, Colombia. Agricultural and Environmental Research Magazine. 8 (1):17-26. doi:

Chaparro, O.; Herrera, O.; Otocar, J. (2012). Effect of a mechanized system of sowing to pineapple in the efficiency of operation in areas of the hillside of Dagua (Valle del Cauca). Agronomic Act. 61(5): 87-88.

Ciesiolka, C.A.; Coughlan, K.J.; Rose, C.W.; Smith, G.D. (1995). Erosion and hydrology of steep lands under commercial pineapple production. Soil Technology. 8(3):243-258. doi:

Crestani, M.; Barbieri, R.; Hawerroth, F.; Carvalho, F.; De Oliveira, A. (2010). Das Américas para o Mundo - origem, domesticação e dispersão do abacaxizeiro. Ciência Rural, Santa Maria. 40(6):1473-1483. doi:

Cruz, J.R (2015). Efficient irrigation management in sugarcane cultivation in the geographical valley of the Cauca River. Cali, Colombia: Cenicaña. 192 p.

Cubero, D.; Sandi, V. (2013). Técnicas agroambientales para el manejo del cultivo de piña. Instituto Nacional de innovación y transferencia en tecnología agropecuaria. San José, Costa Rica. Recovered from:

CVC - Corporación Autónoma Regional del Valle del Cauca. (2013). Internet Site for Data on geography. Recovered from

CVC - Corporación Autónoma Regional del Valle del Cauca. (2014). Levantamiento semidetallado de suelos escala 1:25.000 de las cuencas priorizadas por la Corporación Autónoma Regional del Valle del Cauca - CVC - Convenio interadministrativo 4888 IGAC-087 CVC de 2014. Recovered from

Daza, M.C.; Reyes, A.; Loaiza, W.; Fajardo, M. P. (2012). Index of sustainability of the water resource for the definition of technological sustainable and competitive strategies in the Microbasin la Centella. Gestión y Ambiente. 15(2): 47-58.

Delgado, H.; Arango, L. (2015). Morphoagronomic characterization of pineapple (Ananas spp.) genotypes in high-terrace soil near Villavicencio. Orinoquia. 19(2): 153. doi:

El-Ramady, H. R.; Domokos-Szabolcsy, É.; Abdalla, N. A.; Taha, H. S.; Fári, M. (2015). Postharvest management of fruits and vegetable storage. In: Lichtfouse, E. Sustainable agriculture reviews. pp. 65-152. 15. Cham: Springer. 401p.

El-Swaify, S.A.; Zhang, J.; Ciesiolka, C.A.; Palis, R.; Rose, C.W. (1993). Erosion problems and conservation needs of pineapple culture. Acta Horticulturae. 334(23): 227-240. doi: 10.17660/ActaHortic.1993.334.23

FAO - Food and Agriculture Organization of the United Nations; ITPS - Intergovernmental Technical Panel on Soils. (2015a). World state of soil resources. Technical Summary. Rome, Italy: Food and Agriculture Organization of the United Nations and Intergovernmental Soil Technical Group. 92p.

FAO - Food and Agriculture Organization of the United Nations. (2015b). Soil is a non-renewable resource. Recovered from

FAO - Food and Agriculture Organization of the United Nations. (2019). FAOSTAT. Data crops. Recovered from

FAO - Food and Agriculture Organization of the United Nations. (2022). Cultivos y productos de ganaderia. Cantidades de producción de Piña tropical por país 2017. Recovered from

Gómez, J.; Saavedra, R.; Dávila, G.; Gómez, C.O. (2006). Simple practices for planting pineapple on the hillside. Recovered from

Hassan, A.; Othman, Z. (2011). Pineapple (Ananas comosus L. Merr.). In:, Yahia, E. (Ed.), Postharvest Biology and Technology of Tropical and Subtropical Fruits. 4: 194-218e. UK: Woodhead Publishing Ltd.

Hernández, C.; Florentino, A. (2004). Evaluation of two types of mulch on soils cropped with pineapple under simulated rain in greenhouse conditions. Revista de la Facultad de Agronomía (serbiluz). 21(1): 228-236.

Huerta, J.D.; Oropeza, J.L.; Guevara, R.D.; Ríos, J.D.; Martínez, M.R.; Barreto, O. A.; Olguín, J.L.; Mancilla, O.R. (2018). Efecto de la cobertura vegetal de cuatro cultivos sobre la erosión del suelo. Idesia (Arica). 36(2): 153-162. doi:

IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales.; U.D.C.A-Universidad de Ciencias aplicadas y ambientales. (2015). Protocol to identify and asses soil degradation by erosion in Colombia. Recovered from

Ingwersen, W.W. (2012). Life cycle assessment of fresh pineapple from Costa Rica. Journal of Cleaner Production. 35: 152-163.

Loaiza, W.; Reyes, A.; Carvajal, Y. (2012). Application of a Sustainability Index of Water Resources in Agriculture (ISRHA) to define sustainable technological strategies in the Centella watershed. Scientific Journal Engineering and Development. 30(2): 160-181.

Loch, R. J. (2000). Effects of Vegetation Cover on Runoff and Erosion under Simulated Rain and Overland Flow on a Rehabilitated Site on the Meandu Mine, Tarong, Queensland. Australian Journal of Soil Research. 38: 299-312. doi: 10.1071/SR99030

Lugo, D. R.; Rey, J. C. (2009). Evaluation of the vulnerability to agro-environmental degradation through the use of the MicroLEIS system in soils of the central plains of Venezuela. Revista Internacional de Contaminación Ambiental. 25(1): 43-60.

Martínez, R.; Torres, P.; Meneses, M. A.; Figueroa, J. G.; Pérez, J. A.; Viuda, M. (2012). Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chemistry. 135(3): 1520-1526.

Martínez, C., Rivera, A. O., Menjivar, J. C. (2021). Susceptibility to erosion risks in soils dedicated to pineapple cultivation in the department of Valle del Cauca, Colombia. Earth Sciences Research Journal. 25(2): 201-206.

Oculi, J.; Bua, B.; Ocwa, A. (2020). Reactions of pineapple cultivars to pineapple heart rot disease in central Uganda. Crop Protection. 135: 105213. doi.

Pacheco, H. A.; Méndez, W.; Moro, A. (2019). Soil erosion risk zoning in the Ecuadorian coastal region using geo-technological tools. Earth Sciences Research Journal. 23(4): 293-302. doi: https://doi. org/10.15446/esrj.v23n4.71706

PTP - Programa de transformación productiva.; ASOHOFRUCOL - Colombia Horticultural Association.; FNFH - Fondo Nacional de fomento hortofrutícola. (2013). Plan de Negocios de Piña. Bogotá. Recovered from

Quijandria, G.; Berrocal, J.; Pratt, L. (1997). La Industria de la Piña en Costa Rica Análisis de Sostenibilidad. Costa Rica: Centro Latinoamericano para la Sostenibilidad y el Desarrollo Sostenible. 24p.

Ramírez, F.; Hincapie, E.; Sadeghian, S. (2009). Erodability of soils of the Central Coffee Zone of the Department of Caldas. Cenicafe. 60(1): 58-71.

Sampietro-Vattuone, M.M.; Peña-Monné, J.L.; Roldán, J.; Dip, A.B., Maldonado, M.G.; Lefebvre, M.G.; Vattuone, M. A. (2019). Land management and soil degradation evidence during the Late Holocene in Northwest Argentina (La Costa 2 - Tafí valley). Catena. 182: 104-115. doi:

Sugahara, K.; Ohwaki, Y.; Banzai, K. (2001). Erosion control in pineapple fields on the island of ishigaky. Japan Agricultural Research Quarterly. 35(2): 91-96. doi:

Tafur, R.; Toro, J.; Reyes, C.; García, R.; Muñoz, C. (2006). National Fruit Plan. Valle del Cauca, land of fruits. Recovered from

Uriza Ávila, D.; Torres Ávila, A.; Aguilar Ávila, J.; Santoyo Cortés, V.; Zetina Lezama, R.; Rebolledo Martínez, A. (2018). La piña mexicana frente al reto de la innovación. Avances y retos en la gestión de la innovación. 1 ed. Chapingo, Estado de México. México: UACh. 479p.

Valentin, C.; Roose, E.J, (1980). Soil and water conservation problems in pineapple plantations of south Ivory Coast. In: Morgan, R.P.C. ed. Soil Conservation: Problems and Prospects. (pp. 239-246). Chinchester: Wiley. 7p.

Wan, Y.; El-Swaify, S.A. (1999). Runoff and soil erosion as affected by plastic mulch in a Hawaiian pineapple field. Soil and Tillage Reserach. 52: 29-35. doi:

Wischmeier, W.H.; Smith, D.D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. United States: Department of Agriculture, Science, and Education Administration. 67p.

Yue, L.; Zhao, W.; Liu, X.; Pereira, P. (2020). Global rainfall erosivity changes between 1980 and 2017 based on an erosivity model using daily precipitation data. Catena. 194: 1-12. doi:

Zhang, J.; Liu, J.; Ming, R. (2014). Genomic analyses of the CAM plant pineapple. Journal of Experimental Botany. 65(13): 3395–3404. doi:

How to Cite
Martinez, C., Menjívar, J., & Saavedra, R. (2022). Soils erosion in pineapple (Ananas comosus L. Merr) producing areas. Revista De Ciencias Agrícolas, 39(1). Retrieved from