contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 41 No. 2 (2024): Revista de Ciencias Agrícolas - Second four, May - August 2024

Physiological quality of zucchini seeds is positively affected by postharvest resting periods

DOI
https://doi.org/10.22267/rcia.20244102.230
Submitted
August 28, 2021
Published
2024-08-23

Abstract

In fleshy fruit species such as those of the Cucurbitaceae plant family (e.g., zucchini), the storage or resting after harvest of the fruits enables the seeds to complete their maturation process, reaching maximum levels of germination and vigor. The proper resting period can allow early harvestings, improve the agronomic uses of the area, and reduce seed exposure to weathering and the attack of insects and microorganisms. This study evaluates zucchini seed quality after postharvest resting periods. Zucchini fruits harvested 63 days after transplanting were maintained for 0, 3, 6, 9, or 12 days before seed extraction. The percent of processed seeds (clean and whole seeds), the weight of 100 seeds, germination, first count in germination, germination speed index, electrical conductivity, nitrogen (N), and protein contents were evaluated. Data generally fitted positive linear regression models, increasing the weight of 100 seeds, percent of processed seeds, germination, vigor, seed N, and protein as the resting period after harvest (days) increases. Seed electrical conductivity decreased as days of postharvest rest increased. After the harvest of the zucchini fruits, the resting period positively affected the production of homogeneous and high-quality zucchini seeds.

References

  1. AOAC - Association of Official Agricultural Chemists AOAC (2019). Official Methods of Analysis. 21st ed. Washington, DC: AOAC INTERNATIONAL. 3390p.
  2. Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M.; Mildaziene, V. (2021). Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Science Reports. 11: 2539. 10.1038/s41598-021-81175-x
  3. Barroso, N.S.; Sousa M.O.; Rodrigues, L.C.S.; Pelacani, C.R. (2017). Maturation stages of fruits and physiological seed quality of Physalis ixocarpa Brot. ex Hormen. Revista Brasileira de Fruticultura. 39(3): 1-9. 10.1590/0100-29452017151
  4. Bareke, T. (2018). Biology of seed development and germination physiology. Advances in Plants & Agriculture Research. 8(4): 336-346. 10.15406/apar.2018.08.00335
  5. Baskin, J.; Baskin, C. (2018). Pollen limitation and its effect on seed germination. Seed Science Research. 28(4): 253-260. 10.1017/S0960258518000272
  6. Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data. 5: 180214. 10.1038/sdata.2018.214
  7. Brasil; Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para Análise de sementes. Brasília: Mapa/ACS. 399 p
  8. Bu, H.Y.; Jia, P.; Qi, W.; Xu, D.H.; Ge, W.J.; Wang, X.J. (2018). The effects of phylogeny, life-history traits and altitude on the carbon, nitrogen, and phosphorus contents of seeds across 203 species from an alpine meadow. Plant Ecology. 219: 737–748. 10.1007/s11258-018-0830-6
  9. Cardoso, A.I.I. (2005). Manual pollination of summer squash: effects on fruit and seed production. Horticultura Brasileira. 23(3): 731-734. 10.1590/S0102-05362005000300008
  10. Cardoso, A.I.I.; Claudio, M.T.R.; Magro, F.O.; Freitas P.G.N. (2016). Phosphate fertilization on production and quality of cauliflower seeds. Ciência Rural. 46(8): 1337-1343. 10.1590/0103-8478cr20150664
  11. Carvalho, N.M.; Nakagawa, J. (2012). Seeds: Science, technology and production. 5th ed. Jaboticabal, Brazil: Research Support Foundation Teaching and Extension.
  12. Dayal, A.; Dahiya, O.S.; Punia, R.C.; Mor, V.S. (2018). Effect of seed invigoration treatments on electrical conductivity and field emergence of different pick American cotton (Gossypium hirsutum L.) varieties after fifteen months of controlled storage. International Journal of Pure & Applied Bioscience. 6(2): 1539-1546. 10.18782/2320-7051.6621
  13. Dias, D.C.F.S.; Ribeiro, F.P.; Dias, L.A.S.; Silva, D.J.H.; Vidigal, D.S. (2006). Maturation of tomato seeds in relation to frutification sequence in the plant. Revista Ceres. 53(308): 446-456.
  14. Ellis, R. (2019). Temporal patterns of seed quality development, decline, and timing of maximum quality during seed development and maturation. Seed Science Research. 29(2): 135-142. 10.1017/S0960258519000102
  15. Ferreira, D.F. (2011). Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia. 35(6): 1039-1042. 10.1590/S1413-70542011000600001
  16. Figueiredo Neto, A.; Almeida, F.A.C.; Vieira, J.F.; Silva, M.F. (2015). Physiological maturity of pumpkin seeds. African Journal of Agricultural Research. 10(27): 2662-2667. 10.5897/AJAR2015.9522
  17. Filgueira, F.A.R. (2013). Novo manual de olericultura (New olericulture handbook). 3 ed rev. Viçosa, Brazil: Federal University of Viçosa.
  18. Guo, C.; Shen, Y.; Shi, F. (2020). Effect of temperature, light, and storage time on the seed germination of Pinus bungeana Zucc. ex Endl.: the role of seed-covering layers and abscisic acid changes. Forests. 11(3): 300. 10.3390/f11030300
  19. Jorge, E.V.C.; Souza, A.M.S.; Figueiredo, J.C.; Bernardino, D.L.M.P.; Silva, R.A.N.; Alves, R.A. (2018). Maturation stage and postharvest rest of ‘Biquinho’ pepper fruits on its seeds quality. Revista Brasileira de Ciências Agrárias. 61: 1-7. 10.22491/rca.2018.2725
  20. Maguire, J.D. (1962). Speed of germination - Aid in selection and evaluation for seedling emergence and vigor. Crop Science. 2(2): 176-177. 10.2135/cropsci1962.0011183X000200020033x
  21. Malavolta, E.; Vitti, G.C.; Oliveira, S.A. (1997). Avaliação do estado nutricional das plantas, princípios e aplicações. Piracicaba, Brazil: Associação Brasileira para a Pesquisa da Potassa e do Fosfato.
  22. Marcos Filho, J. (2015). Fisiologia das sementes de plantas cultivadas (Seed physiology of cultivated plants). 2nd ed. Londrina, Brazil: Abrates.
  23. Marrocos, S.T.P.; Medeiros, M.A.; Grangeiro, L.C.; Torres, S.B.; Lucena, R.R.M. (2011). Seed maturation in butternut squash, variety menina brasileira. Revista Brasileira de Sementes. 33(2): 272-278. 10.1590/S0101-31222011000200009
  24. Melo Junior, J.L.A.; Melo, L.D.F.A.; Rezende, L.P.; Ferreira, V.M.; Araujo Neto, J.C.; Silva, V.S.G.; Paes, R.A.; Chaves, L.FG.; Souto, P.C.; Silva, R.J.N. (2019). Physiological maturation and postharvest resting of papaya fruits and seeds in agroecological transition. Australian Journal of Crop Science. 13: 995-1000. 10.21475/ajcs.19.13.06.p1799
  25. Nakada-Freitas, P.G.; Cardoso, A.I.I.; Lanna, N.B.L.; Araujo, H.S.; Santos, C.A.; Magalhães, T.H. (2018). Ripening and resting of vegetable fruits for seed production and quality. In: Polycarpo, G.V.; Biller, J.D.; Ferrari, S.; Rosas, F.S.; Menbrive, C.M.B.; Viana, R.S.; Tomaz, R.S. (eds.). International Meeting of Agrarian Science and Technology - Atualidades nas Ciências Agrarias. pp 76-101. Brasil: Cultura Acadêmica.
  26. Nakada-Freitas, P.G.; Oliveira, J.A.; Melo, L.C.; Gomes, L.A.A.; Von Pinho, E.V.R. (2011). Physiological and biochemical performance of cucumber seeds at different maturation stages. Revista Brasileira de Sementes. 33(1): 22-30. 10.1590/S0101-31222011000100013
  27. Pereira, F.E.C.B., Torres, S.B., Silva, M.I.L., Grangeiro, L.C., Benedito, C.P. (2014). Physiological quality of pepper seeds in relation to age and period of postharvest resting. Revista Ciência Agronômica. 45(3): 737-744. 10.1590/S1806-66902014000400011
  28. Raij, B.V.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. (1997). Recomendações de adubação e calagem para o Estado de São Paulo (Fertilization and liming recommendations for the State of São Paulo). Brazil: Instituto Agronômico/Fundação Instituto Agronômico de Campinas, Campinas.
  29. Rodrigues, A.N.C; Gilmara, P.M.P.; Madelon, R.S.B.; Breier, B.T. (2020). Quality parameters of pink pepper seeds as sustainability indicators. Revista de Ciencias Agrícolas. 37(2): 27-39. 10.22267/rcia.203702.135
  30. Sanches, A.G.; Silva, M.B.; Moreira, E.G.S.; Cosme, S.S. (2017). Índice de maturação fisiológica em sementes do híbrido de abobrinha italiana em função da idade de colheita. Revista Trópica: Ciências Agrárias e Biológicas. 9(1): 41-49.
  31. Santivañez, A.A.; Vasque, H.; Felito, R.A.; Gaona, A.A.F.; Bardiviesso, E.M.; Pelvine, R.A.; Casdoso, A.I.I.; Lemes, E.M. (2020). Macronutrient contents of eggplant seeds with different ages and postharvest resting times. Bulgarian Journal of Agricultural Science. 26(6): 1171-1178.
  32. Santivañez, A.A. (2019). Qualidade fisiológica, enzimas antioxidantes e teores de macronutrientes em sementes de berinjela em função de idades e tempos de repouso pós-colheita dos frutos. https://hdl.handle.net/11449/183520
  33. Sarabi, V. (2019). Factors that influence the level of weed seed predation: a review. Weed Biology and Management. 19: 61–74. 10.1111/wbm.12186
  34. Silva, C.D.; David, A.M.S.S.; Figueiredo, J.C.; Barbosa, J.L.R.; Alves, R.A. (2019). Fruit maturation stage on the physiological quality of maroon cucumber seeds. Pesquisa Agropecuária Tropical. 49: e53188. 10.1590/1983-40632019v4953188
  35. Silva, H.W.; Soares, R.S.; Vale, L.S.R. (2015). Quality of chilli-peppers seeds depending on the fruits postharvest resting. Revista de Ciências Agrárias. 58(4): 427-433. 10.4322/rca.2129
  36. Silva, H.W.; Oliveira, J.A.; Monfort, L.H.F.; Santos, J.M.T.; Trancoso, A.C.R.; Carvalho, M.V. (2017). Physiological maturity and drying speed in the quality of zucchini (Cucurbita pepo L.) seeds. Journal of Seed Science. 39(2): 142-149. 10.1590/2317-1545v39n2171033
  37. Singh, R.; Singh P.; Dhillon, T.S. (2020). Physiological maturity and longevity of pumpkin seeds in relation to fruit age and duration of in situ storage. International Journal of Current Microbiology and Applied Sciences. 9(8): 2633-2641. 10.20546/ijcmas.2020.908.301
  38. Suriyasak, C.; Oyama, Y.; Ishida, T.; Mashiguchi, K.; Yamaguchi, S.; Hamaoka, N.; Iwaya-Inoue, M.; Ishibashi, Y. (2020). Mechanism of delayed seed germination caused by high temperature during grain filling in rice (Oryza sativa L.). Scientific Reports. 10: 17378. 10.1038/s41598-020-74281-9
  39. Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. (2018). Fundamentals of plant physiology. New York: Oxford University Press. 561 p.
  40. Trancoso, A.C.R.; Dias, D.C.F.S.; Picoli, E.A.T.; Silva Júnior, R.A.; Silva, L.J.; Nascimento, W.M. (2021). Anatomical, histochemical and physiological changes during maturation of chickpea (Cicer arietinum L.) seeds. Revista Ciência Agronômica. 52(4): e20207534. 10.5935/1806-6690.20210048
  41. Travlos, I.; Gazoulis, I.; Kanatas, P.; Tsekoura, A.; Zannopoulos, S.; Papastylianou, P. (2020). Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Frontiers in Agronomy. 2: 1. 10.3389/fagro.2020.00001
  42. Vidigal, D.S.; Dias, D.C.F.S.; Naveira, D.S.P.C.; Rocha, F.B.; Bhering, M.C. (2006). Physiological quality of tomato seeds in relation to fruit age and postharvest storage. Revista Brasileira de Sementes. 28(3): 87-93. 10.1590/S0101-31222006000300013
  43. Vidigal, D.S.; Dias, D.C.F.S.; Pinho, E.V.R.V.; Dias, L.A.S. (2009). Physiological and enzymatic changes during pepper seeds (Capsicum annuum L.) maturation. Revista Brasileira de Sementes. 31(2): 129-136. 10.1590/S0101-31222009000200015
  44. Vieira, R.D.; Dutra, A.S. (2006). Electrical conductivity of pumpkin hybrid Bárbara seeds. Horticultura Brasileira. 24(3): 305-308. 10.1590/S0102-05362006000300007

Downloads

Download data is not yet available.