Soil vulnerability index to climatic variability in coffee regions of Colombia
DOI:
https://doi.org/10.22267/rcia.213802.165Keywords:
Fertilization, nutrient leaching, soil management, erosion, precipitation, water storage capacity, organic matterAbstract
Global climate change is one of the main factors threatening agriculture. In this context, variations in precipitation have the strongest effect on soil fertility, plant nutrient availability, and erosion. This research aimed to assess soil vulnerability to climate variability in the central coffee-growing region of Colombia. This study analyzed soil components involved in the sustainability of the coffee production system as affected by extreme high and low precipitation events. For evaluation, three sensitivity indices were constructed, with a weighted aggregation structure and with weight values defined from expert knowledge. The indices were estimated by randomly selecting 432 coffee farms in the municipalities of Balboa and Santuario in Risaralda department and Salamina in Caldas department. The soil nutrient availability and conservation vulnerability index was moderate in the three municipalities (Balboa=2.87 and coefficient of variation-CV 13%; Santuario=2.88 and CV 10%; Salamina=2.9 and CV 9%). The soil leaching vulnerability index was very low in Balboa (4.33 and CV 3%) and Salamina (4.74 and CV 7%) and low in Santuario (3.57 and CV 19%). The soil loss vulnerability index was low in Balboa (3.32 and CV 10.03%) and Salamina (3.49 and CV 11.43%) and moderate in Santuario (3.13 and CV 9.34%). Lastly, the vulnerability of coffee-growing soil to climate variability was low in Balboa (3.33) and Salamina (3.45) and moderate in Santuario (3.09). Based on these results, in the three municipalities, coffee growers must introduce farming practices towards improving soil resilience and decreasing soil vulnerability to high and low precipitation extremes by adequately managing the sources and doses of fertilizers, soil conditioners, and compost and by implementing integrated management of weeds and litterfall.
Downloads
Metrics
References
Arias, E.; Sadeghian, S. (2011). Lixiviación del fósforo en suelos de la zona cafetera y su relación con la textura. Suelos Ecuatoriales. 41(2): 150-154.
Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri Chhetri, A.; Rahut, D.B.; Jat, M.L. (2020). Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environ Dev Sustain. 22: 5045–5075. doi: https://doi.org/10.1007/s10668-019-00414-4
Altieri, M.A.; Nicholls, C.I. (2009). Cambio climático y agricultura campesina: impactos y respuestas adaptativas. LEISA revista de agroecología. 14: 5-8.
Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; Pulleman, M.; Sukkel, W.; van Groenigen J.W.; Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry. 120: 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Choo, H.; Park, K.H.; Won, J.; Burns, S.E. (2018). Resistance of coarse-grained particles against raindrop splash and its relation with splash erosion. Soil and Tillage Research. 184: 1-10. doi: https://doi.org/10.1016/j.still.2018.06.009
Dai, C.; Liu, Y.; Wang, T.; Li, Z.; Zhou, Y. (2018). Exploring optimal measures to reduce soil erosion and nutrient losses in southern China. Agricultural Water Management. 210: 41-48. doi:10.1016/j.agwat.2018.07.032
Elbehri, A.; Challinor, A.; Verchot, L.; Angelsen, A.; Hess, T.; Ouled Belgacem, A.; Clark, H.; Badraoui, M.; Cowie, A.; De Silva, S.; Erickson, J.; Joar Hegland, S.; Iglesias, A.; Inouye, D.; Jarvis, A.; Mansur, E.; Mirzabaev, A.; Montanarella, L.; Murdiyarso, D.; Notenbaert, A.; Obersteiner, M.; Paustian, K.; Pennock, D.; Reisinger, A.; Soto, D.; Soussana, J-F.; Thomas, R.; Vargas, R.; Van Wijk, M.; Walker, R. (2017). FAO-IPCC, expert meeting on climate change, land use and food security. New Zealand: FAO HQ Rome.
Field, C.; Barros, V.; Dokken, D.; Mach, K.; Mastrandrea, M.; Billir, T.; Chatterjee, M.; Ebi, K.; Estrada, Y.; Genova, R.; Girma, B.; Kissel, E.; Levy, A.; MacCracken, S.; Mastrandrea P.; White, L. (2014). Cambio climático 2014. Impactos, adaptación y vulnerabilidad. Ginebra, Suiza: Organización Meteorológica Mundial. 34p.
FNC-Federación Nacional de Cafeteros de Colombia; IGAC-Instituto Geográfico Agustín Codazzi. (2017). Atlas cafetero de Colombia. Colombia: Imprenta Nacional de Colombia.
FNC-Federación Nacional de Cafeteros de Colombia. (2013a). Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura (Vol. 2). Colombia: Cenicafé.
FNC-Federación Nacional de Cafeteros de Colombia. (2013b). Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura (Vol. 1). Cenicafé.
Fritzsche, K.; Schneiderbauer, S.; Bollin, C.; Bubeck, P.; Kienberger, S.; Buth, M.; Zebisch, M.; Kahlenborn, W. (2014). The Vulnerability Sourcebook: Concept and guidelines for standardised vulnerability assessments. Bonn y Eschborn: Deutsche Gesellschaft für Internationale Zusammenarbeit. doi: http://119.78.100.173/C666/handle/2XK7JSWQ/11273
FAO-Food and agricultural organization of the united nations. (2018). Noticias FAO, 22 mil millones de dólares en diez años: el costo de las pérdidas agrícolas por desastres en américa latina y el caribe.
Recovered from http://www.fao.org/americas/noticias/ver/es/c/1112330
Gao, S.; DeLuca, T.H.; Cleveland, C.C. (2019). Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Science of the Total Environment. 654: 463-472.
Geng, G.; Wu, J.; Wang, Q.; Lei, T.; He, B.; Li, X.; Luo, H; Zhou, H.; Liu, D. (2016). Agricultural drought hazard analysis during 1980–2008: a global perspective. Int. J. Climatol. 36 (1): 389–399. doi: https://doi.org/10.1002/joc.4356
Gregory, A.S.; Watts, C.W.; Griffiths, B.S.; Hallett, P.D.; Kuan, H.L.; Whitmore, A.P. (2009). The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma. 153(1-2): 172-185. doi: https://doi.org/10.1016/j.geoderma.2009.08.002
Hatfield, J.L.; Wright-Morton, L.; Hall, B. (2018). Vulnerability of grain crops and croplands in the Midwest to climatic variability and adaptation strategies. Climatic Change. 146: 263–275. doi: https://doi.org/10.1007/s10584-017-1997-x
Magaña, V.(2013). Guía Metodológica para la Evaluación de la Vulnerabilidad ante Cambio Climático. México: Instituto Nacional de Ecología; Cambio Climático-INECC; Programa de las Naciones Unidas para el Desarrollo-PNUD. 61p.
IGAC-Instituto Geográfico Agustín Codazzi. (1990). Métodos analíticos del laboratorio de suelos. 5 ed. Bogotá: IGAC.
Jaramillo, A.; Arcila, J. (2009). Variabilidad climática en la zona cafetera colombiana asociada al evento de la niña y su efecto en la caficultura. Recovered from https://biblioteca.cenicafe.org/handle/10778/1133
Khan, N.A.; Gao, Q.; Abid, M.; Shah, A.A. (2021).Mapping farmers’ vulnerability to climate change and its induced hazards: evidence from the rice-growing zones of Punjab, Pakistan. Environ Sci Pollut Res. 28: 4229–4244. doi: https://doi.org/10.1007/s11356-020-10758-4
Lince-Sálazar, L. A. (2021). Capacidad de almacenamiento de agua en suelos cultivados en café y otras propiedades edáficas relacionadas. Revista Cenicafé. 72(1): e72101. doi: https://doi.org/10.38141/10778/72101
Lince-Sálazar, L.A.; Sadeghian, S. (2021). Taxonomía de suelos. Consideraciones para la zona cafetera de Colombia. Boletín Técnico Cenicafé. 45: 1-34. doi: 10.38141/10782/045
Lince, L.A.; Sadeghian, S. (2016). Producción de café (Coffea arabica L.) en respuesta al manejo especifico por sitio de la fertilidad del suelo. Revista de Investigación Agraria y Ambiental. 7(2): 25-37.
Lince, L.A.; Castaño, W.A.; Castro, A.F.; Torres, F.A. (2016). Erosividad de la lluvia en la región cafetera de Risaralda, Colombia. Revista de Investigación Agraria y Ambiental. 7(1): 37-45. doi:10.22490/21456453.1548
Mahmoodabadi, M.; Sajjadi, S.A. (2016). Effects of rain intensity, slope gradient and particle size distribution on the relative contributions of splash and wash loads to rain-induced erosion. Geomorphology. 253: 159-167. doi: https://doi.org/10.1016/j.geomorph.2015.10.010
Mârza, B; Angelescu, C.; Tindecheb, C. (2015). Agricultural Insurances and Food Security. The New Climate Change Challenges. Procedia Economics and Finance. 27: 594–599. doi: https://doi.org/10.1016/S2212-5671(15)01038-2
Maximillian, J.; Brusseau, M.L.; Matthias, A.D. (2019). Chapter 25-Pollution and Environmental Perturbations in the Global System. In: Brusseau, M.L.; Gerba, C.P.; Pepper, I.L. (Eds), Environmental and Pollution Science. pp. 457-476. Third edition. California: Academic Press. doi: https://doi.org/10.1016/B978-0-12-814719-1.00025-2
Mengel, K. (2007). Potassium. In: Barker, A.V.; Pilbeam, D.J. (Ed), Handbook of plant nutrition. (pp. 91-120). New York, The United States of America: Taylor & Francis Group.
Mishra, A.K.; Singh, V.P.; (2010). A review of drought concepts. J. Hydrol. 391 (1–2): 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012
Nunes, F; Alves, L.; Carvalho, C.; Gross, E.; Soares, T.; Majeti, P. (2020). Soil as a complex ecological system for meeting food and nutritional security. In: Majeti, P; Pietrzykowski, M. (Eds), Climate Change and Soil Interactions (pp. 229-269). Elsevier Ltd. All. doi: https://doi.org/10.1016/B978-0-12-818032-7.00009-6
Nze Memiaghe, J.D.; Cambouris, A.N.; Ziadi, N.; Karam, A.; Perron, I. (2021). Spatial variability of soil phosphorus indices under two contrasting grassland fields in Eastern Canada. Agronomy. 11(1): 24.
Obour, P.B.; Jensen, J.L.; Lamandé, M.; Watts, C.W.; Munkholm, L.J. (2018). Soil organic matter widens the range of water contents for tillage. Soil Tillage Res. 182: 57-65. doi: https://doi.org/10.1016/j.still.2018.05.001
O’halloran, I.P.; Kachanoski, R.G.; Stewart, J.W.B. (1985). Spatial variability of soil phosphorus as influenced by soil texture and management. Canadian journal of soil science. 65(3): 475-487.
Ouyang, W.; Wu, Y.; Hao, Z.; Zhang, Q.; Bu, Q.; Gao, X. (2018). Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Science of The Total Environment. 613: 798-809. doi: https://doi.org/10.1016/j.scitotenv.2017.09.173
Page, T.; Haygarth, P.M.; Beven, K.J.; Joynes, A.; Butler, T.; Keeler, C.; Wood, G.A. (2005). Spatial variability of soil phosphorus in relation to the topographic index and critical source areas: sampling for assessing risk to water quality. Journal of Environmental Quality. 34(6): 2263-2277.
Patiño, M.A.; Sadeghian, S.; Montoya, E.C. (2007). Caracterización de la fertilidad de los suelos de la zona cafetera del Valle del Cauca mediante registros históricos. Chinchiná (Colombia). Revista Cenicafé. 57(1): 7-16.
Ramírez, V.H.; Arcila, J.; Jaramillo, A.; Rendón, J.R.; Cuesta, G.; García, J.C.; Menza, H.D.; Mejía M., C.G.; Montoya, D.F.; Mejía, J.W.; Torre, J.C.; Sánchez, P.M.; Baute, J.E.; Peña, A.J. (2011). Variabilidad climática y la floración del café en Colombia. Avances Técnicos Cenicafé, 407. Recovered from https://www.cenicafe.org/es/index.php/nuestras_publicaciones/avances_tecnicos/avance_tecnico_0407
Ramírez, F.A.; Hincapié, E. (2009). Riesgo a la erosión en la zona cafetera central del departamento de Caldas. Revista Cenicafé. 60(2):173-189.
Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants. 8(2): 34. doi: https://doi.org/10.3390/plants8020034
Reyes, A.G.I.; Adame, M.S.; Cadena, V.E. (2018). Vulnerabilidad ante la variabilidad climática en los cultivos de maíz Zea mays. Soc. Ambient. 17: 93-113.
Roger, A.; Libohova, Z.; Rossier, N.; Joost, S.; Maltas, A.; Frossard, E.; Sinaj, S. (2014). Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma. 217: 26-36. doi: https://doi.org/10.1016/j.geoderma.2013.11.001
Sadeghian, S.; Alarcón, V.F.; Díaz, V.C.; Lince, L.A.; Rey-Sandoval, J.C. (2019). Fertilidad del suelo y manejo de la nutrición. Colombia: Centro Nacional de Investigaciones de Café (Ed.), Vol. 1. 2015-2019. Cenicafé. doi: https://doi.org/10.38141/cenbook-0005
Sadeghian K., S.; Duque O., H. (2017). Formulaciones generales de fertilizantes: Alternativas para una nutrición balanceada de los cafetales en Colombia. Avances Técnicos Cenicafé. 483. Recovered from https://www.cenicafe.org/es/index.php/nuestras_publicaciones/avances_tecnicos/avance_tecnico_0483
Sadeghian, S.; González, H.; Arias, S. (2015). Lixiviación de nutrientes en suelos de la zona cafetera Prácticas que ayudan a reducirla. Boletín Técnico Cenicafé. 40: 1-36.
Sadeghian, S. 2008. Fertilidad del suelo y nutrición del café en Colombia. Boletín técnico Cenicafé. 32: 1-45.
Salamanca, A.; Sadeghian, S. (2005). La densidad aparente y su relación con otras propiedades en suelos de la zona cafetera Colombiana. Cenicafé. 56(4):381-397.
Sarmiento, E.; Fandiño, S.; Gómez, L. (2018). Índices de calidad del suelo. Una revisión sistemática. Ecosistemas. 27(3):130-139. doi: 10.7818/ECOS.1598
SSSA - Soil Science Society of America. (2008). Glossary of Soil Science Terms 2008. United States: SSSA. doi: https://doi.org/10.1002/9780891188957
Sparks, D.L. (2003). Environmental soil chemistry. San Diego: Academic Press. 352p.
Tao, S.; Xu, Y.; Liu, K.; Pan, J.; Gou, S. (2011). Research progress in agricultural vulnerability to climate change. Advances in climate change resarch. 2(4): 203-210. doi: https://doi.org/10.3724/SP.J.1248.2011.00203
Wilson, H.F.; Satchithanantham, S.; Moulin, A.P.; Glenn, A.J. (2016). Soil phosphorus spatial variability due to landform, tillage, and input management: A case study of small watersheds in southwestern Manitoba. Geoderma. 280: 14-21.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Universidad de Nariño
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.