Toxicological studies in poultry consuming fumonisin from corn contaminated with Brazilian Amazonian flora

  • Oelton Júnior Universidade Federal do Tocantins
  • Alex Sander Cangussu Universidade Federal do Tocantins
  • Ana Patrícia da Silva Universidade Federal do Tocantins
  • Kenia Rodrigues Universidade Federal do Tocantins
  • Mellanie Félix Universidade Federal do Tocantins
  • Túllio Teixeira Deusdará Universidade Federal do Tocantins
  • Tatiani Ferreira Universidade Federal do Tocantins
  • Hélio Brito Universidade Federal do Tocantins
  • Kelvinson Viana Universidade Federal da Integracão Latino-Americana
  • Eliane Macedo Sobrinho Instituto Federal do Norte Minas Gerais
  • Raimundo Wagner Aguiar Universidade Federal do Tocantins
  • Gil Rodrigues dos Santos Universidade Federal do Tocantins
Keywords: mycotoxins, corn meal, feed contamination


The fungus Fusarium verticillioides produces fumonisins (FB1 and FB2), characterized by being the most frequently produced molecular forms and with greater toxicity. Fumonisin contamination is responsible for substantial losses during the meat production chain, so the safe levels of these compounds must be determined. The study was directed to establish safe levels of FB1 in poultry production; for this purpose, were used COBB 500® birds on experimental lots of infected corn during the 2015/2016 season in Brazil. The experimental group included 160 animals, divided into two groups: The T1 without fumonisin in the diet (control); and the T2 group in which corn was contaminated with 2.78 μg/g of fumonisin FB1. Histopathological effects of liver, heart, and small intestine, and zootechnical parameters were measured in birds treated. We found that there were no significant differences between the birds treated and untreated after 21 days of exposure to each treatment; F-values > P-values (P<0,05) for feed intake and weekly weight gain. Taken together, our data showed that the concentration evaluated is safe in poultry and will contribute to the design of future clinical studies.


Download data is not yet available.
Visits to the article summary page: 274


Alberts, J. F.; van Zyl, W.H.; Gelderblom, W.C.A. (2016). Biologically based methods for control of fumonisin-producing Fusarium species and reduction of the fumonisins. Frontiers in Microbiology. 7(548). doi:

Bhardwaj, H.; Rajesh, H.; Sumana, G. (2021). Recent advances in nanomaterials integrated immunosensors for food toxin detection. Journal of Food Science and Technology. 59: 12–33. doi:

Bouhet, S.; Oswald, I. P. (2007). The intestine as a possible target for fumonisin toxicity. Molecular Nutrition Food Research. 51(8): 925-931. doi:

Cangussu, A. S. R.; Mariúba, L. A. M.; Lalwani, P.; Pereira, K. D. E. S.; Astolphi-Filho, S.; Orlandi, P. P.; Epiphanio, S.; Viana, K. F.; Ribeiro, M. F. B.; Silva, H. M.; Marinho, C. R. F.; Nogueira, P. A. (2018). A hybrid protein containing MSP1a repeats and Omp7, Omp8 and Omp9 epitopes protect immunized BALB/c mice against anaplasmosis. Veterinary Research. 49(1): 1-11. doi:

Comissão Europeia. (2006). Recomendação Da Comissão, de 17 de Agosto de 2006, sobre a presença de desoxinivalenol, zearalenona, ocratoxina A, toxinas T-2 e HT-2 e fumonisinas em produtos destinados à alimentação animal. Retrieved from

Dall'Asta, C.; Galaverna, G.; Aureli, G.; Dossena, A.; Marchelli, R. (2008). A LC/MS/ MS method for the simultaneous quantification of free and masked fumonisins in maize and maize-based products. World Mycotoxin Journal. 1(3): 237-246.

Doyle, J.J.; Doyle J.L. (1990). Isolation of plant DNA from fresh tissue. Focus. 12: 13-15.

Grenier, B.; Dohnal, I.; Shanmugasundaram, R.; Eicher, S. D.; Selvaraj, R. K.; Schatzmayr, G.; Applegate, T. J. (2016). Susceptibility of broiler chickens to coccidiosis when fed subclinical doses of deoxynivalenol and fumonisins—special emphasis on the immunological response and themycotoxin interaction. Toxins. 8(8): 2031. doi:

Haschek, W. M.; Motelin, G.; Ness, D. K.; Harlin, K. S.; Hall, W. F.; Vesonder, R. F.; Peterson, R. E.; Beasley, V. R. (1992). Characterization of fumonisin toxicity in orally and intravenously dosed swine. Mycopathologia. 117(1–2): 83-96. doi:

Knutsen, H. K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Nebbia, C. S.; Petersen, A.; Rose, M.; Roudot, A. C.; Schwerdtle, T.; Vleminckx, C.; Vollmer, G.; … Oswald, I. P. (2018). Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA Journal. 16(5):5242. doi:

Kovalsky, P.; Kos, G.; Nährer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. (2016). Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize–An extensive survey. Toxins. 8(12): 1-29. doi:

Ledoux, D. R.; Bermudez, A. J.; Rottinghaus, G. E. (1996). Effects of Feeding Fusarium moniliforme Culture Material, Containing Known Levels of Fumonisin B1, in the Young Turkey Poult. Poultry Science. 75(12): 1472-1478. doi:

Lerda, D. (2017). Fumonisins in Foods from Cordoba (Argentina), Presence: Mini Review. Toxicology: Open Access. 03(02): 2-5. doi:

Ministério da Saúde do Brasil. (2011). Resolução de Diretoria Colegiada – RDC No 07 in Ministério da Saude. Agencia Nacional de Vigilância Sanitaria. Brasil: Ministério da Saúde do Brasil.

Morales, L.; Zila, C.T.; Mejía, D.E.M.; Arbelaez, M. M.; Balint-Kurti, P. J.; Holland, J. B.; Nelson, R. J. (2019). Diverse components of resistance to fusarium verticillioides infection and fumonisin contamination in four maize recombinant inbred families. Toxins. 11(2): 86. doi:

Murugesan, G.R.; Ledoux, D.R.; Naehrer, K.; Berthiller, F.; Applegate, T. J.; Grenier, B.; Phillips, T.D.; Schatzmayr, G. (2015). Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Science. 94(6): 1298-1315. doi:

Oldenburg, E.; Höppner, F.; Ellner, F.; Weinert, J. (2017). Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Research. 33(3): 167-182. doi:

Priyanka, S. R.; Venkataramana, M.; Balakrishna, K.; Murali, H. S.; Batra, H. V. (2015). Development and evaluation of a multiplex PCR assay for simultaneous detection of major mycotoxigenic fungi from cereals. Journal of Food Science and Technology. 52(1): 486-492. doi:

Rashidi, N.; Khatibjoo, A.; Taherpour, K.; Akbari-Gharaei, M.; Shirzadi, H. (2020). Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poultry Science. 99(11): 5896-5906. doi:

Rauber, R. H.; Dilkin, P.; Mallmann, A. O.; Marchioro, A.; Mallmann, C. A.; Borsoi, A.; Nascimento, V. P. (2012). Individual and combined effects of Salmonella typhimurium lipopolysaccharide and fumonisin B1 in broiler chickens. Poultry Science. 91(11): 2785-2791. doi:

Rosa Junior, O. F.; Dalcin, M. S.; Nascimento, V. L.; Haesbaert, F. M.; Ferreira, T.P.; Fidelis, R. R.; Sarmento, R.; Aguiar, R.; De Oliveira, E. E.; Dos Santos, G. R. (2019). Fumonisin production by fusarium verticillioides in maize genotypes cultivated in different environments. Toxins. 11(4):215. doi:

Shen, F.; Wu, Q.; Shao, X.; Zhang, Q. (2018). Non-destructive and rapid evaluation of aflatoxins in brown rice by using near-infrared and mid-infrared spectroscopic techniques. Journal of Food Science and Technology. 55(3): 1175-1184. doi:

Smith, M. C.; Madec, S.; Coton, E.; Hymery, N. (2016). Natural Co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins. 8(4): 94. doi:

Van Cleemput, J.; Poelaert, K. C. K.; Laval, K .; Van den Broeck, W.; Nauwynck, H. J. (2019). Deoxynivalenol, but not fumonisin B1, aflatoxin B1 or diesel exhaust particles disrupt integrity of the horse’s respiratory epithelium and predispose it for equine herpesvirus type 1 infection. Veterinary Microbiology. 234: 17-24. doi:

Van Egmond, H.P.; Jonker, M.A. (2005). Worldwide regulations for mycotoxins in food and feed in 2003: Summary of study. European Union: Food and Nutrition Paper. 171p.

Venkataramana, M.; Navya, K.; Chandranayaka, S.; Priyanka, S.R.; Murali, H.S.; Batra, H.V. (2014). Development and validation of an immunochromatographic assay for rapid detection of fumonisin B1 from cereal samples. Journal of Food Science and Technology. 51(9): 1920-1928. doi:

Walker, C.; Maciel, C.G.; Milanesi, P.M.; Muniz, M.F.B.; Mezzomo, R.; Pollet, C.S. (2016). Morphological, molecular and patogenicity characterization of fusarium acuminatum and fusarium verticillioides to cordia americana seeds. Ciencia Florestal. 26(2): 463-473. doi:

Wielogorska, E.; MacDonald, S.; Elliott, C.T. (2016). A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. World Mycotoxin Journal. 9(3): 419-433. doi:

Wyatt, R.D.; Henry, M.H. (1993). A Review of Fumonisin Production by Fusarium moniliforme and Fumonisin Toxicosis in Animals. Journal of Applied Poultry Research. 2(2): 188-192. doi:

Yarru, L.P.; Settivari, R.S.; Gowda, N.K.S.; Antoniou, E.; Ledoux, D.R.; Rottinghaus, G. E. (2009). Effects of turmeric (curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poultry Science. 88(12): 2620-2627. doi:

Zachariasova, M.; Dzuman, Z.; Veprikova, Z.; Hajkova, K.; Jiru, M.; Vaclavikova, M.; Zachariasova, A.; Pospichalova, M.; Florian, M.; Hajslova, J. (2014). Occurrence of multiple mycotoxins in european feedingstuffs, assessment of dietary intake by farm animals. Animal Feed Science and Technology. 193: 124-140. doi:

How to Cite
Júnior, O., Cangussu, A. S., da Silva, A., Rodrigues, K., Félix, M., Deusdará, T., Ferreira, T., Brito, H., Viana, K., Sobrinho, E., Aguiar, R., & dos Santos, G. (2022). Toxicological studies in poultry consuming fumonisin from corn contaminated with Brazilian Amazonian flora. Revista De Ciencias Agrícolas, 39(2). Retrieved from

Most read articles by the same author(s)