Assessment of transitory crops in cocoa (Theobroma cacao L) agroforestry in Páez, Boyacá
DOI:
https://doi.org/10.22267/rcia.20244101.225Keywords:
Agroforestry, cowpea beans, LER, intercropping, maize, sustainable agricultureAbstract
Agroforestry systems incorporate several productive components per unit area to yield efficiency. However, considering the high degree of complexity inherent to interspecific plant-plant interactions, little is known about most of these systems' real productive potential and efficiency. In this context, it is important to analyze the interactions between the components to identify potential favorable associations. The objective of this research was to evaluate the performance of the transitory crops maize (Zea mays L) and cowpea (Vigna unguiculata L) in a family farming system under three agroforestry arrangements with cocoa in the municipality of Páez, Boyacá, Colombia. A split plot design was used, where the main plots corresponded to three shade forest species, which were associated with cocoa and the transient crops. The subplots corresponded to three planting systems: CS1cocoa+maize, CS2 coca+beans and CS3 cocoa+maize+beans. The effect on agronomic and productive traits of transitory crops (maize and beans) was evaluated, and an economic analysis was carried out. For beans, the effect of the cropping system on yield (t. ha-1) stood out, while for maize, the statistical effect was given by the forest x cropping system interaction in most of the variables evaluated. Considering the interspecific interactions found under the influence of different forests, the use of Colombian mahogany as a companion species in these intercropping systems is suggested. The cost analysis revealed that the maize-bean association is more efficient in the equivalent use of land. Therefore, the data obtained reveal more efficient strategies for sustainable cocoa productivity in Colombia.
Downloads
Metrics
References
Agudelo, G.A.; Cadena, J.; Almanza, P.J.; Pinzón, E.H. (2018). Desempeño fisiológico de nueve genotipos de cacao (Theobroma cacao L.) bajo la sombra de tres especies forestales en Santander, Colombia. Revista Colombiana de Ciencias Hortícolas. 12(1): 223–232. https://doi.org/10.17584/rcch.2018v12i1.7341
Amfo, B.; Ali, E. B. (2020). Climate change coping and adaptation strategies: How do cocoa farmers in Ghana diversify farm income? Forest Policy and Economics. 119: 102265. https://doi.org/10.1016/J.FORPOL.2020.102265
Arcila, J.; Farfán, F.; Moreno, A.; Salazar, L.; e Hincapié, E. (2007). Sistemas de producción de café en Colombia. Caldas: Cenicafé.
Bai, W.; Sun, Z.; Zheng, J.; Du, G.; Feng, L.; Cai, Q.; Yang, N.; Feng, C.; Zhang, Z.; Evers, J.B.; van der Werf, W.; Zhang, L. (2016). Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agriculture Water Management. 178: 281–290. doi.org/10.1016/j.agwat.2016.10.007
Bitew, Y.; Derebe, B.; Worku, A.; Chakelie, G. (2021). Response of maize and common bean to spatial and temporal differentiation in maize-common bean intercropping. PLoS One, 16(10), e0257203. https://doi.org/10.1371/journal.pone.0257203
Cely, L.A. (2017). Oferta productiva del cacao colombiano en el posconflicto. Estrategias para el aprovechamiento de oportunidades comerciales en el marco del acuerdo comercial Colombia-Unión Europea. Equidad y Desarrollo. (28): 167-195. https://doi.org/10.19052/ed.4211
Cerda, R.; Deheuvels, O.; Calvache, D.; Niehaus, L.; Saenz, Y.; Kent, J.; Vilchez, S.; Villota, A.; Martinez, C.; Somarriba, E. (2014). Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agroforestry Systems. 88(6): 957-981. https://doi.org/10.1007/s10457-014-9691-8
Charani, E.; Sharifi, P.; Aminpanah, H. (2018). The competitive ability of maize (Zea mays L.)- common bean (Phaseolus vulgaris L.) intercrops against weeds. Universidad del Zulia – Venezuela. Revista de la Facultad de Agronomía. 35(1): 40-62.
Deb, D.; Dutta, S. (2022). The robustness of land equivalent ratio as a measure of yield advantage of multi-crop systems over monocultures. Experimental Results. 3: E2. 10.1017/exp.2021.33
Ebel, R.; Pozas J. G.; Miranda, F.; Cruz, J. (2017). Manejo orgánico de la milpa: rendimientos de maíz, frijol y calabaza en monocultivo y policultivo. Terra Latinoamericana, 35: 149-160.
Farfán, F. (2014). Agroforestería y Sistemas Agroforestales con Café. Caldas: Cenicafé. 342 p.
FEDECACAO - Federacion Nacional De Cacaoteros. (2023). Boletín de Prensa. https://www.fedecacao.com.co/
Hamd- Alla, W. A.; Shalaby, E. M.; Dawood, R. A.; Zohry, A. A. (2014). Effect of cowpea (Vigna sinensis L.) with maize (Zea mays L.) intercropping on yield and its components. International Journal of Biological, Veterinary, Agricultural and Food Engineering. 8(11): 1170-1176.
Hatfield, J.L.; Dold, C. (2019). Water-use efficiency: Advances and challenges in a changing climate. Frontiers in Plant Science. 10: 1–14. doi.org/10.3389/fpls.2019.00103
Jaimes-Suárez, Y. Y.; Carvajal-Rivera, A. S.; Galvis-Neira, D. A.; Carvalho, F. E. L.; Rojas-Molina, J. (2022). Cacao agroforestry systems beyond the stigmas: Biotic and abiotic stress incidence impact. Frontiers in Plant Science. 13: 921469. https://doi.org/10.3389/fpls.2022.921469
Kermah, M.; Franke, A.; Ahiabor, B.; Adjei-Nsiah, S.; Abaidoo, R.; Giller, K. (2019). Legume–maize rotation or relay? Options for ecological intensification of smallholder farms in the Guinea Savanna of Northern Ghana. Experimental Agriculture, 55(5): 673-691. https://doi.org/10.1017/S0014479718000273
Kenward, M. G.; Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 53(3): 983-997. https://doi.org/10.2307/2533558
Koko, L.K.; Snoeck, D.; Lekadou, T.T.; Assiri, A.A. (2013). Cacao-fruit tree intercropping effects on cocoa yield, plant vigour and light interception in Côte d’Ivoire. Agroforestry Systems. 87: 1043–1052. https://doi.org/10.1007/s10457-013-9619-8
Krzywinski, M.; Altman, N. (2015). Multiple linear regression. Nat Methods. 12: 1103–1104. https://doi.org/10.1038/nmeth.3665
Kuznetsova, A.; Brockhoff, P.; Christensen, R. (2017). lmerTest: Tests in Linear mixed effects models. Journal of Statistical Software. 82 (13). 10.18637/jss.v082.i13
Legwaila, G. M.; Marokane, T. K.; Mojeremane, W. (2012). Effects of intercropping on the performance of maize and cowpeas in Botswana. International Journal of Agriculture and Forestry. 2(6): 307-310.
Li, B.; Liu, J.; Shi, X.; Han, X.; Chen, X.; Wei, Y.; Xiong, F. (2023). Effects of belowground interactions on crop yields and nutrient uptake in maize-faba bean relay intercropping systems. Archives of Agronomy and Soil Science. 69(2): 314–325. https://doi.org/10.1080/03650340.2021.1989416
López-Sánchez, E.; Musálem, M. A. (2007). Sistemas agroforestales con cedro rojo, desarrollo de plantaciones forestales comerciales en Los Tuxtlas, Veracruz, México. Chapingo serie Ciencias Forestales y del Ambiente. 13(1): 59-66.
Masvaya, E.N.; Nyamangara, J.; Descheemaeker, K.; Giller, K.E. (2017). Is maize-cowpea intercropping a viable option for smallholder farms in the risky environments of semi-arid southern Africa. Field Crops Research, 209: 73-87. https://doi.org/10.1016/j.fcr.2017.04.016
Meza, J. (2013). Evaluación financiera de proyectos. Tercera edición. Bogotá: Ecoe Ediciones. 360p.
Meier, L. (2022). ANOVA and Mixed Models A Short Introduction Using R. Chapter 7 Split-Plot Designs. https://stat.ethz.ch/~meier/teaching/anova/split-plot-designs.html
MADR - Ministerio de Agricultura y Desarrollo Rural. (2021). Cadena de Cacao. https://sioc.minagricultura.gov.co/Cacao/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf
Namatsheve, T.; Chikowo, R.; Corbeels, M.; Mouquet-Rivier, C.; Icard-Vernière, C.; Cardinael, R. (2021). Maize-cowpea intercropping as an ecological intensification option for low input systems in sub-humid Zimbabwe: productivity, biological N2-fixation and grain mineral content. Field Crops Res. 263: 108052. https://doi.org/10.1016/j.fcr.2020.108052
Nassary, E. K.; Baijukya, F.; Ndakidemi, P. A. (2020). Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania. European Journal of Agronomy. 113: 125964. https://doi.org/10.1016/j.eja.2019.125964
Palomino De La Cruz, O. B. (2019). Secuencia de siembra en asociación del cultivo de caupi (Vigna unguiculata L.) y maíz (Zea mays L.) en agricultura sucesional, centro poblado Natividad, Pichari 485 msnm, Cusco, 2017. http://repositorio.unsch.edu.pe/handle/UNSCH/3530
Pineda, A. (2018). El cacao: una apuesta para la transformación del territorio en el Occidente de Boyacá. https://bdigital.uexternado.edu.co/handle/001/681
Piraquive, G.; Matamoros, C.; Céspedes, R.; Rodríguez, C. (2018). Actualización de la tasa de rendimiento del capital en Colombia bajo la metodología de Harberger. DNP Departamento nacional de planeación. https://colaboracion.dnp.gov.co/CDT/Estudios%20Econmicos/487.pdf
Rediet, A.; Walelign, W.; Sheleme, B. (2017). Performance variation among improved common bean (Phaseolus vulgaris L.) genotypes under sole and intercropping with maize (Zea mays L.). African Journal of Agricultural Research. 12(6): 397-405. https://doi.org/10.5897/ajar2016.11794
Rusinamhodzi, L.; Corbeels, M.; Nyamangara, J.; Giller, K.E. (2012). Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crop Res. 136: 12-22.
Sánchez, B.; Rasmussen, A.; Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: a review. Global Change Biology. 20(2): 408-417. 10.1111/gcb.12389
Sanfo, A.; Zampaligré, N.; Kulo, A. E.; Somé, S.; Traoré, K.; Rios, E. F.; Dubeux, J. C. B.; Boote, K. J.; Adesogan, A. (2022). Performance of food–feed maize and cowpea cultivars under monoculture and intercropping systems: Grain yield, fodder biomass, and nutritive value. Frontiers in Animal Science. 3: 998012. https://doi.org/10.3389/fanim.2022.998012
Somarriba, E.; Lopez-Sampson, A. (2018). Coffee and Cocoa Agroforestry Systems: Pathways to Deforestation, Reforestation, and Tree Cover Change. Washington: International Bank for Reconstruction and Development / The World Bank. 51p.
Somarriba, E.; Orozco-Aguilar, L.; Cerda, R.; López-Sampson, A. (2018). Analysis and design of the shade canopy of cocoa-based agroforestry systems. Australia: burleigh dodds science publishing. https://doi.org/10.19103/as.2017.0021.29
Surabhi, G. K.; Reddy, K. R.; Singh, S. K. (2009). Photosynthesis, fluorescence, shoot biomass, and seed weight responses of three cowpea (Vigna unguiculata (L.) Walp.) cultivars with contrasting sensitivity to UV-B radiation. Environmental and Experimental Botany. 66(2): 160-171. https://doi.org/10.1016/j.envexpbot.2009.02.004
Takim, F.O (2012). Advantages of maize-cowpea intercropping over sole cropping through competition indices. Journal of Agriculture and Biodiversity Research. 1: 53-59.
Usuda, H.; Ku, M.S.B.; Edwards, G.E. (1985). Influence of light intensity during growth on photosynthesis and activity of several key photosynthetic enzymes in a C4 plant (Zea mays). Physiologia Plantarum. 63(1): 65-70. https://doi.org/10.1111/j.1399-3054.1985.tb02819.x
Vandermeer, J. (1989). The ecology of intercropping. New York: Cambridge Univ. Press. 237 p.
Vélez, L.; Clavijo, J.; Ligarreto, G. (2007). Análisis ecofisiológico del cultivo asociado maíz (Zea mays L.) - Frijol voluble (Phaselus vulgaris L.). Revista Facultad Nacional de Agronomía. 60 (2): 3965-3984.
Vélez, L. D.; Moya, A.; Clavijo, L. J. (2011). Relaciones de competencia entre el frijol trepador (Phaseolus vulgaris L.) y el maíz (Zea mays L.) sembrados en asocio. Revista Facultad Nacional de Agronomía Medellín. 64(2): 6065-6079.
Zequeira-Larios, C.; Santiago-Alarcon, D.; MacGregor-Fors, I.; Castillo-Acosta, O. (2021). Tree diversity and composition in Mexican traditional smallholder cocoa agroforestry systems. Agroforest Syst. 95: 1589-1602. https://doi.org/10.1007/s10457-021-00673-z
Zhanbota, A.; Noor, R. S.; Khan, A. I.; Wang, G.; Waqas, M. M.; Shah, A. N.; Ullah, S. (2022). A two-year study on yield and yield components of maize-white bean intercropping systems under different ssowing techniques. Agronomy. 12(2): 240. https://doi.org/10.3390/agronomy12020240
Ziaie-Juybari, H.; Pirdashti, H.; Abo-Elyousr, K.; Mottaghian, A. (2021). Abiotic benefits of intercropping legumes and maize to reduce pests. Archives of Phytopathology and Plant Protection. 54: 1539-1552. https://doi.org/10.1080/03235408.2021.1919592
Zhang, F.; Li, L. (2003). Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil. 248: 305–312. https://doi.org/10.1023/A:1022352229863
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.