The Impact of Agricultural Credit on Banana cultivation in Valle del Cauca, Colombia
DOI:
https://doi.org/10.22267/rcia.20234001.201Keywords:
financing, public policies, production, Propensity Score Matching, probit, selection biasAbstract
This study aimed to explore the use and effect of agricultural credit disbursed from banks and financial institutions on banana yield in farmers from Valle del Cauca (Colombia) using data from the National Agricultural Census (2014). Additionally, it evaluated whether the effect of credit differs according to the items in which the farmer prefers to invest. For this purpose, because credits are not granted randomly, this research used the Propensity Score Matching (PSM) methodology to manage selection bias. Initially, it was found through the probit model that having one's own agricultural machinery, using chemical fertilization to improve soil fertility, not belonging to an ethnic minority, and having some type of basic or higher education, increases the probability of obtaining an agricultural credit. On the other hand, the results suggest that credit has positive and significant effects on crop yield (6.2%), but the effect is greater if it is invested in land purchase and post-harvest processes, with an increase of 39% and 37% in yield, respectively. On the other hand, this study also suggests that, if credit is invested in items not related to agricultural activity, yields can be affected with a 10% reduction. Finally, it is recommended that a public policy be implemented to encourage greater participation of banana farmers in Valle del Cauca in agricultural credit programs, given their low participation (10%) despite the high acceptability rate (86%).
Downloads
Metrics
References
Ali, D.A.; Deininger, K.; Duponchel, M. (2014). Credit Constraints and Agricultural Productivity: Evidence from rural Rwanda. The Journal of Development Studies. 50(5): 649-665. 10.1080/00220388.2014.887687
Bagamba, F. (2007). Enhancing food security through promotion of small-scale irrigation: A case study of Nyamaropa irrigation scheme, Eastern Zimbabwe. https://edepot.wur.nl/30548
Caliendo, M.; Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys. 22: 31-72. 10.1111/j.1467-6419.2007.00527.x
Chandio, A.A.; Yuansheng, J.; Sahito, J.G.M.; Larik, S.A. (2016). Impact of formal credit on agricultural output: Evidence from Pakistan. African Journal of Business Management. 10(8): 162-168.
De La Hoz, F.J. (2018). Sector rural colombiano: crédito y actividad agrícola. https://repositorio.uniandes.edu.co/bitstream/handle/1992/34562/u808024.pdf?sequence=1
Deininger, K.; Castagnini, R.; González, M.A. (2013). Reforma agraria y mercados de tierra en Colombia: los impactos en la equidad y eficiencia. Planeación y Desarrollo. XXXIV (2): 213-247.
DANE-Departamento Administrativo Nacional de Estadística. (2016). CNA Tomo2- Resultados. https://www.dane.gov.co/files
/images/foros/foro-de-entrega-de-resultados-y-cierre-3-censo-nacional-agropecuario/CNATomo2-Resultados.pdf
DANE- Departamento Administrativo Nacional de Estadística. (2017). Tercer Censo Nacional Agropecuario. http://microdatos.
dane.gov.co/index.php/catalog/513/get_microdata
Diallo, M.F.; Zhou, J.; Elham, H.; Zhou, D. (2020). Effect of Agricultural Credit Access on Rice Productivity: Evidence from the Irrigated Area of Anambe Basin, Senegal. Journal of Agricultural Science. 12(3). https://doi.org/10.5539/jas.v12n3p78
Dong, F.; Lu, J.; Featherstone, A.M. (2010). Effects of Credit Constraints on Productivity and Rural Household Income in China. https://core.ac.uk/download/pdf/6550597.pdf
Echavarría, J.J.; Villamizar-Villegas, M.; Restrepo-Tamayo, S.; Hernandez-Leal, J.D. (2017). Impacto del crédito sobre el Agro en Colombia Evidencia del nuevo Censo Nacional Agropecuario. Colombia: Banco Interamericano de Desarrollo. https://doi.org/10.18235/0000836
Elahi, E.; Abid, M.; Zhang, L.; ul Haq, S.; Sahito, J.G.M. (2018). Agricultural advisory and financial services; farm level access, outreach and impact in a mixed cropping district of Punjab, Pakistan. Land Use Policy. 71: 249-260. 10.1016/j.landusepol.2017.12.006
Fuglie, K.; Gautam, M.; Goyal, A.; Maloney, W.F. (2020). Technology and Productivity Growth in Agriculture Harvesting Prosperity. World Bank Publications. 10.1596/978-1-4648-1393-1
Leibovich, J.; Botello, S.; Estrada, L.; Vásquez, H. (2013). "Vinculación de los pequeños productores al desarrollo de la agricultura", Políticas para el Desarrollo de la Agricultura en Colombia. Bogotá: Fedesarrollo, Sociedad de Agricultores de Colombia (SAC), Incoder, Finagro, Banco Agrario.
Mahalakshmi, C.; Vinoth Kumar, S.; Maneesh, P.; Syed, J.; Fathima, A. (2016). An Analysis of Banana Cultivation in Theni District, Tamil Nadu. Indian Journal of Economics and Development. 4(9): 1-12.
Ministerio de Agricultura y Desarrollo Rural. (2021). Cadena de banano. https://sioc.minagricultura.gov.co/Banano/Documentos/2021-06-30%20Cifras%20Sectoriales.pdf
Mutis, S. (1996). Diccionario Geográfico de Colombia. Colombia: Instituto Geográfico Agustín Codazzi. Ed. 3rd, Vol. 1.
Nordjo, R.E.; Adjasi, C.K.D. (2019). The impact of credit on productivity of smallholder farmers in Ghana. Agricultural Finance Review. 80(1): 91-109. 10.1108/afr-10-2018-0096
Obisesan A.A. (2013). Credit Accessibility and Poverty among Smallholder Cassava Farming Households in Southwest, Nigeria. Greener J of Agric Sci. 3(2): 120-127. 10.15580/GJAS.2013.2.112712295
Otsuka, K.; Liu, Y.; Yamauchi, F. (2016). Growing advantage of large farms in Asia and its implications for global food security. Global Food Security. 11: 5-10. https://doi.org/10.1016/j.gfs.2016.03.001
Owusu, S. (2017). Factors affecting farmhouseholds; access to credit in the Afigya-Kwabre district of Ghana. International Journal of Scientific Research in Social Sciences & Management Studies. 2(1): 98-113.
Rani, S.P.; Mani, K.; Vidhyavathi, A. (2019). A study on agricultural credit in adoption of technology in banana cultivating farms in Tamil Nadu. International research journal of agricultural economics and statistics. 10(2): 194-200. 10.15740/has/irjaes/10.2/194-200
Rodríguez Paz, J.A. (2020). Impacto del crédito sobre la productividad de los cultivos en Colombia. https://repositorio.flacsoandes.ed
u.ec/bitstream/10469/16094/8/TFLACSO-2020JARP.pdf
Shivaswamy, G.P.; Raghavendra, K.; Anuja, A.; Singh, K.P.; Rajesh, T.; Kumar, H.V. (2020). Impact of institutional credit on agricultural productivity in India: A time series analysis. Indian Journal of Agricultural Sciences. 90(2): 412-417. 10.56093/ijas.v90i2.99033
Wirakusuma, G.; Irham, I. (2021). Can Credit Program Improve Agricultural Productivity? Evidence from Indonesia. https://doi.org/10.
/e3sconf/20212320100
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.