Persian lemon in the Mexican counties of Nayarit and Veracruz: Foliar sampling period for nutritional diagnosis
DOI:
https://doi.org/10.22267/rcia.20234002.206Keywords:
Leaf tissue analysis, Citrus latifolia Tan, sprouting, nutrition, nutritional stabilityAbstract
In Mexico, Nayarit and Veracruz stand out as producers of Persian lemon. Nayarit has a larger surface area with high production potential and a 68% expansion of its cultivated area in the last 10 years. Veracruz has larger planted area and production volume. This investigation was conducted aiming to determine the period of nutritional stability in Persian lemon leaves and define the appropriate time to perform foliar sampling for nutritional diagnosis. In 2017, rainfed orchards were selected in both states. Per orchard, 20 trees were selected, 50 shoots were marked per flow (Nayarit winter and summer, Veracruz winter and spring), and sampled monthly. Soil and foliar nutrient analysis was performed (total nitrogen (N-total) (semi-microKjeldahl digestion), nitrates (NO3) (colorimetry), potassium (K) (atomic absorption), phosphorus (P), sulfur (S), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), (ICP-Optical Coupled Plasma using an ICAP 7200 spectrophotometer (Thermo Scientific®), and boron (B) (colorimetry) (Genesis 20 spectrophotometer (Thermo Scientific®)). Daily predicted values were calculated and the best functions (highest R2, lowest mean square of the error and value of the Mallows coefficient) were chosen. Mathematical derivatives and criteria were calculated to determine the best period for sampling. For Nayarit, the appropriate period for leaf sampling was the summer flush of July 29 to August 18 and from February 8 to March 19 for the winter flush. In Veracruz, it was from April 10 to May 10 for the winter flush and from September 23 to October 8 for the spring flush.
Downloads
Metrics
References
Aburto-González, C. A.; Alejo-Santiago, G.; Ramírez-Guerrero, L. A.; Sánchez-Hernández, R. (2017). Concentración foliar de macronutrientes en diferentes etapas fenológicas del litchi cv. Brewster. Interciencia. 42(7): 441-445.
Arrobas, M.; Afonso, S.; Rodrigues, M. A. (2018). Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Scientia Horticulturae. 228(1):113–121. https://doi.org/10.1016/j.scienta.2017.10.027
Baker, A. S. (1967). Colorimetric determination of nitrate in soil and plant extracts with brucine. Journal of Agricultural and Food Chemistry. 15(5): 802-806.
Baquero-Peñuela, J. E.; Yacomelo-Hernandez, M. J.; Orduz-Rodríguez, J. O. (2018). Efecto del yeso sobre las características químicas de un Oxisol de la Orinoquia colombiana cultivado con lima ácida Tahití. Temas agrarios. 23(2):154-163.
Bingham, F. T. (1982). Boron. In: Page, A. L.; Miller, R. H.; Keeney, D. R. (ed.), Methods of soil analysis. Part 2. (pp. 431-446). Madison, WI, USA: American Society of Agronomy and Soil Science Society of America.
Bray, R. H.; Kurtz, L.T. (1945). Determination of total, organic and available phosphorus in soil. Soil Science. 59(1):39-46.
Carlson, R. M.; Cabrera, R. I.; Paul, J. L.; Quick, J.; Evans, R. Y. (1990). Rapid direct measurement of ammonium and nitrate in soil and plant tissue extracts. Communications in Soil Science and Plant Analysis. 21(13-16): 1519-1529. https://doi.org/10.1080/00103629009368319
Castricini, A.; Da Silva, J. T. A.; Da Silva, I. P.; Vilela-Rodrigues, M. G. (2017). Calidad de cal ácida Tahití fertilizada con nitrógeno y potasio en la región semiárida de Minas Gerais. Revista Brasileira de Fruticultura. 39(2):1-10. https://doi.org/10.1590/0100-29452017288
Dahnke, W. C. (1990). Testing soils for available nitrogen. In: Westerman, R. L. (ed.). Soil testing and plant analysis. (pp. 127-139). Madison, WI, USA: American Society of Agronomy and Soil Science Society American.
De Mello-Prado, R.; Rozane, D. E. (2020). Leaf analysis as diagnostic tool for balanced fertilization in tropical fruits. In: Srivastava, A.K.; Chengxiao, Hu (eds.). Fruit Crops. (pp. 131-143). Cambridge, MA 02139, United States: Elsevier. https://doi.org/10.1016/B978-0-12-818732-6.00011-3
Doll, E. C.; Lucas, R. E. (1973). Testing soil for potassium, calcium and magnesium. In: Walsh, L. M.; Beaton, J. D. (eds.), Soil testing and plant analysis. (pp. 133-151). Madison, WI, USA: American Society of Agronomy and Soil Science Society American.
Draper, N. R.; Smith, H. (1981). Applied regression analysis. 2nd Edition. New York: John Wiley & Sons Inc.
FAOSTAT - Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2021). Base de datos por cultivo. http://www.fao.org/faostat/es/#data/QC
Freire-Cruz, A.; De Almeida, G. M.; Guilherme-Salvador, P. W.; De Carvalho-Pires, M.; Gerosa-Ramos, M. L. (2019). Seasonal variation of plant mineral nutrition in fruit trees. Brazilian Archives of Biology and Technolog. 62(e19180340): 2019. http://dx.doi.org/10.1590/1678-4324-2019180340
Gómez-Flores, W.; Garza-Saldaña, J. J.; Varela-Fuentes, S. E. (2019). Detection of huanglongbing disease based on intensity-invariant texture analysis of images in the visible spectrum. Computers and Electronics in Agriculture. 162(7): 825-835. http://dx.doi.org/10.1016/J.COMPAG.2019.05.032
Granville, W.A.; Smith, P. F.; Longley, E. R. (1963). Elements of the differential and integral calculus. USA: John Wiley & Sons Inc.
Haung, C. L.; Schulte, E. E. (1985). Digestion of plant tissue for analysis by ICP emission spectroscopy. Communications in Soil Science and Plant Analysis. 16(9):943-958.
Kumar, S.; Awasthi, O. P.; Dubey, A. K.; Pandey, R.; Sharma, V. K.; Mishra, A.K.; Sharma, R. M. (2018). Root morphology and the effect of rootstocks on leaf nutrient acquisition of Kinnow mandarin (Citrus nobilis Loureiro × Citrus reticulata Blanco). The Journal of Horticultural Science and Biotechnology. 93(1):100-106.
Lindsay, W. L.; Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42(3):421-428.
Liu, W.; Su, J.; Li, S.; Lang, X.; Huang, X. (2018). Non-structural carbohydrates regulated by season and species in the subtropical monsoon broad-leaved evergreen forest of Yunnan Province. China. Scientific Reports. 8(1083): 2018. https://doi.org/10.1038/s41598-018-19271-8
Machado, D.; Lopes De Siqueira, D.; Chambum Salomao, L. C.; Cecon, P. R.; Pereira Da Silva, D. F. (2017). Evaluación de portainjertos para cal ácida Tahití en el norte del estado de Minas Gerais. Revista Brasileira de Fruticultura. 39(1):e-790. https://doi.org/10.1590/0100-29452017790
Matsuoka, K. (2020). Methods for nutrient diagnosis of fruit trees early in the growing season by using simultaneous multi-element analysis. The Horticulture Journal. (89): 197-207.
Mattos, D.; Kadyampakeni, D. M.; Quiñones Oliver A.; Marcelli Boaretto, R.; Morgan, K. T.; Quaggio, J. A. (2020). Soil and nutrition interactions. In: Talon, M.; Caruso, M.; Gmitter, G. F. (eds.). The Genus Citrus. (pp. 311-331). United Kingdom: Woodhead Publishing. https://doi.org/10.1016/B978-0-12-812163-4.00015-2
McLean, E. O. (1982). Soil pH and lime requirement. In: Page, A. L.; Miller, R. H.; Keeney, D. R. (eds.). Methods of soil analysis. (pp. 199-223). USA: American Society of Agronomy and Soil Science Society of America.
Minitab, LLC. (2021). Minitab 17 Statistical Software [Computer software]. www.minitab.com
Morgan, K. T.; Kadyampakeni, D. M.; Zekri, M.; Schumann, A. W.; Vashisth, T.; Obreza, T. A. (2017). Florida citrus production guide: Nutrition management for citrus trees. Gainesville, FL: UF/IFAS Extension publication. https://doi.org/10.32473/edis-cg091-2021
Neter, J. N.; William, W.; Kutner, M. H. (1985). Applied linear statistical models. 2nd Ed. New York: McGraw-Hill.
Obreza, T. A.; Zekri, M.; Hanlon, E. A. (2020). Soil and Leaf Tissue Testing. In: Obreza T. A. ; Morgan K.T. (eds.). Nutrition of Florida Citrus Trees. (pp. 23-29). 3ª Edition. E.U., Florida: University of Florida.
Pérez, O.; Nava, M. E. (2021). Evolution of Mexican citriculture (1993-2018). The case of the municipality of Gutiérrez Zamora, Veracruz. Revista de Geografía Agrícola. (67):9-25. http./dx.doi.org/10.5154/r.rga.2021.67.01
Rosas-Patiño, G.; Puentes-Páramo, Y. J.; Menjivar-Flores, J. C. (2021). Efecto del pH sobre la concentración de nutrientes en cacao (Theobroma cacao L.) en la Amazonia Colombiana. Revista U.D.C.A Actualidad & Divulgación Científica. 24(1):e1643. https://doi.org/10.31910/rudca.v24.n1.2021.1643
SAGARPA - Secretaría de Agricultura y Desarrollo Rural. (2012). Potencial productivo de especies agrícolas de importancia socioeconómica en México. Publicación especial Núm. 8. México: Imprenta Resurrección.
Salazar-García, S.; González-Durán, I. J. L.; Ibarra-Estrada. M. E. (2015). Identification of the apropiate leaf sampling period for nutrient analysis in “Hass” avocado. HortScience. 50(1):130-136. https://doi.org/10.21273/HORTSCI.50.1.130
SAS Institute Inc. (2011). SAS 9.3 Procedures guide. Cary, N. C. USA: SAS Institute Inc.
Shunfeng, G. E.; Zhanling, Z. H. U.; Peng, L.; Chen, Q.; Jiang, Y. (2018). Soil nutrient status and leaf nutrient diagnosis in the main apple producing regions in China. Horticultural Plant Journal. 4(3): 89-93. https://doi.org/10.1016/j.hpj.2018.03.009
SIAP - Servicio de Información Agroalimentaria y Pesquera. (2022). Anuario Estadístico de la Producción Agrícola. https://nube.siap.gob.mx/cierreagricola/.
Systat Software Inc. (2012). SigmaPlot 10: Exact graphs and data analysis. [Computer software]. www.systatsoftware.com/
Sosa-Rodrígues, B. A.; García-Vivas, Y. S. (2020). Contenido y distribución de macronutrientes en rambután en el litoral atlántico de Honduras. Agronomía Mesoamericana. 31(3):749-760. https://dx.doi.org/10.15517/am.v31i3.40421
Suh, J. H.; Niu, Y. S.; Wang, Z.; Gmitter, F. G.; Wang, Y. (2018). Metabolic analysis reveals altered long-chain fatty acid metabolism in the host by huanglongbing disease. Journal of Agricultural and Food Chemistry. 66(5):1296-1304. https://doi.org/10.1021/acs.jafc.7b05273
Uçgun, K.; Gezgin, S. (2017). Can nutritional status of apple trees be determined by leaf analysis in early vegetation. Journal Plant Nutrition. (40):277-282. http://dx.doi.org/10.1080/01904167.2016.1236951
Volke-Haller, V. H.; Sánchez, G. P.; Cortés, F. J. I.; Orozco, M. M.; Camacho, B. R. (2017). Rango de suficiencia nutrimental foliar para el guayabo (Psidium guajava L.), en la región oriente de Michoacán, México. Revista Fitotecnia Mexicana. 40(3): 285-297. https://doi.org/ 10.35196/rfm.2017.3.285-297
Walkley, A. J.; Black, I. A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Scence. 37(1):29-38.
Wear, J. I. (1965). Boron. In: Black, C. A. (ed.) Methods of soil analysis. (pp. 1059-1063). USA: American Society of Agronomy.
Yildiz, E.; Kaplankıran, M.; Uygur, V. (2018). Rootstock induced seasonal changes of N, P and K nutrient levels in satsuma mandarin cvs. ‘Okitsu’, ‘Clausellina’ and ‘Silverhill’. Erwerbs-Obstbau. 60(3): 1-7. https://doi.org/10.1007/s10341-017-0340-z
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.