Optimization of spray drying for lulo (Solanum quitoense Lam.) pulp using response surface methodology

Authors

DOI:

https://doi.org/10.22267/rcia.20244101.227

Keywords:

Ascorbic acid, encapsulants, maltodextrin, lulo powder, whey protein, spray drying

Abstract

Lulo (Solanum quitoense Lam.) is an exotic fruit with high potential in international markets due to its intense aromatic characteristics and its content of nutritional and bioactive compounds. However, it is highly perishable, which backslashes its potential for international exportation. Despite the drying processes affect the nutritional and sensory characteristics, fruit powders obtained by spray drying are promising products for the food, cosmetic, and pharmaceutical industries. This work was conducted aiming to optimize the spray-drying process of lulo pulp. A Box-Behnken design with response surface methodology was used, in which the factors evaluated were inlet air temperature (160 - 220 °C), maltodextrin concentration (15-35%), and whey protein concentration (WPC) (1-5% w/w). The feed rate and air velocity were kept constant at 4 mL/min and 9 m/s, respectively. The optimization resulted in an inlet air temperature of 205.6 °C, 35% maltodextrin, and 1.96% WPC. Under these conditions, the mathematical model estimated a powder yield of 62.8%, a moisture content of 2.3 %, a bulk density of 0.49 g/mL, a solubility of 91.9 %, and an ascorbic acid content of 120.8 mg/100 g powder. The optimal process conditions and the mixture of encapsulants (MD and WPC) allow for obtaining lulo powder with adequate yield and quality characteristics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Acosta, L.; Martínez, J. F.; Sánchez, F. S.; Hernández, M.; Nerio, L. S. (2023). Optimization of the encapsulation process of Cupuassu (Theobroma grandiflorum) pulp by spray drying as an alternative for the valorization of Amazonian fruits. LWT. 184: 114994. https://doi.org/10.1016/J.LWT.2023.114994

Aguirre, L.; Cubillos, L.; Tarazona, M.; Rodriguez, L. (2019). Effect of treatment and storage time on the functional compounds of blackberry and strawberry by-products. Revista U.D.C.A Actualidad & Divulgación Científica. 25(1): 2619-2551. https://doi.org/10.31910/rudca.v22.n1.2019.1169

Akbarbaglu, Z.; Peighambardoust, S.; Sarabandi, K.; Jafari, S. (2021). Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemistry. 359: 129965. https://doi.org/10.1016/j.foodchem.2021.129965

Bannikova, A.; Zyainitdinov, D.; Evteev, A.; Drevko, Y.; Evdokimov, I. (2020). Microencapsulation of polyphenols and xylooligosaccharides from oat bran in whey protein-maltodextrin complex coacervates: In-vitro evaluation and controlled release. Bioactive Carbohydrates and Dietary Fibre. 23: 100236. https://doi.org/10.1016/j.bcdf.2020.100236

Braga, V.; Rocha, L.; Corrêa, R.; Zotarelli, M. (2020). Production and characterization of pineapple-mint juice by spray drying. Powder Technology. 375: 409-419. https://doi.org/10.1016/j.powtec.2020.08.012

Castañón, J.; Uresti, R.; Soto, M.; Santiago, R.; Ortiz, R. (2020). Evaluation of spray-drying´s operable condition for obtaining orange juice powder: effects on physicochemical properties. CyTA - Journal of Food. 18(1): 195-202. doi:10.1080/19476337.2020.1728388

Cortés, M.; Hernández, G.; Estrada, E. (2017). Optimization of the spray drying process for obtaining cape gooseberry powder: an innovative and promising functional food. Vitae, revista de la facultad de ciencias farmacéuticas y alimentarias. 24(1): 59-67. http://dx.doi.org/10.17533/udea.vitae.v24n1a07

Escobar, H. J.; Garavito, J.; Castellanos, D. A. (2023). Development of an active packaging with an oxygen scavenger and moisture adsorbent for fresh lulo (Solanum quitoense). Journal of Food Engineering. 349: 111484. https://doi.org/10.1016/J.JFOODENG.2023.111484

Fazaeli, M.; Emam, Z.; Kalbasi, A.; Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing. 90(4): 667–675. doi:10.1016/j.fbp.2012.04.006

Ferreira, G.; Pereira, L.; Fakhouri, M.; de Oliveira, R. (2018). Microencapsulation of blackberry pulp with arrowroot starch and gum arabic mixture by spray drying. Journal of Microencapsulation. 35(5): 482-493. https://doi.org/10.1080/02652048.2018.1538264

Forero, D.; Carriazo, J.; Osorio, C. (2015). Effect of different drying methods on morphological, thermal, and biofunctional properties of lulo (Solanum quitoenseLam.) fruit powders. Drying Technology. 34(9): 1085–1094. 10.1080/07373937.2015.1094667

Forero, D.; Orrego, C.; Peterson, D.; Osorio, C. (2014). Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chemistry. 169: 85 – 91. https://doi.org/10.1016/j.foodchem.2014.07.111

Gawałek, J. (2022). Spray Drying of Chokeberry Juice—Antioxidant Phytochemicals Retention in the Obtained Powders versus Energy Consumption of the Process. Foods. 1(18): 2898. https://doi.org/ 10.3390/foods11182898

Gawalek, J. (2021). Effect of Spray Dryer Scale Size on the Properties of Dried Beetroot Juice. Molecules. 26(21): 6700. https://doi.org/10.3390/molecules26216700

Ho, T. M.; Zhu, J.; Bansal, N.; Boyce, M. C.; Le, T. T. (2021). Effect of pH and heat treatment on physicochemical and functional properties of spray-dried whey protein concentrate powder. International Dairy Journal. 119: 105063. https://doi.org/10.1016/J.IDAIRYJ.2021.105063

ICONTEC - Instituto Colombiano de Normas Técnicas y Certificación. (2002). NTC 5093: Frutas frescas: Lulo de Castilla. Especificaciones. Norma Técnica Colombiana. Colombia: ICONTEC.

Igual, M.; García, P.; Martínez, J. (2021). Resistant maltodextrin’s effect on the physicochemical and structure properties of spray dried orange juice powders. European Food Research and Technology. 247: 1125–1132. 10.1007/s00217-021-03693-2

Igual, M.; Ramires, S.; Mosquera, L.; Martínez, N. (2014). Optimization of spray drying conditions for lulo (Solanum quitoense L.) pulp. Powder Technology. 256: 233–238. https://doi.org/10.1016/j.powtec.2014.02.003

Indira, L.; Barrera, C.; Seguí, L.; Betoret, N. (2021). Potential Use of Vacuum Impregnation and High-Pressure Homogenization to Obtain Functional Products from Lulo Fruit (Solanum quitoense Lam.). Foods. 10(4): 817. https://doi.org/10.3390/foods10040817

Indira, L.; Duarte, S.; Seguí, L.; Barrera, C.; Betoret, N. (2020). Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient. Foods. 9(6): 723. https://doi.org/10.3390/foods9060723

Jafari, S.; Arpagaus, C.; Cerqueira, M.; Samborska, K. (2021). Nano spray drying of food ingredients; materials, processing, and applications. Trends in Food Science & Technology. 109: 632-646. 10.1016/j.tifs.2021.01.061

Khalifa, I.; Li, M.; Mamet, T.; Li, C. (2019). Maltodextrin or gum Arabic with whey proteins as wall-material blends increased the stability and physiochemical characteristics of mulberry microparticles. Food Bioscience. 31: 100445. 10.1016/j.fbio.2019.100445

Kumar, R.; Tejpal, C.; Anas, K.; Chatterjee, N.; Mathew, S.; Ravishankar, C. (2021). Binary blend of maltodextrin and whey protein outperforms gum Arabic as superior wall material for squalene encapsulation. Food Hydrocolloids. 121: 106976. https://doi.org/10.1016/j.foodhyd.2021.106976

Lekshmi, R.; Tejpal, C.; Anas, K.; Chatterjee, N.; Mathew, S.; Ravishankar, C. (2021). Binary blend of maltodextrin and whey protein outperforms gum Arabic as superior wall material for squalene encapsulation. Food Hydrocolloids. 121: 106976. 10.1016/j.foodhyd.2021.106976

Meena, S.; Prasad, W.; Khamrui, K.; Mandal, S.; Bhat, S. (2021). Preparation of spray-dried curcumin microcapsules using a blend of whey protein with maltodextrin and gum arabica and its in-vitro digestibility evaluation. Food Bioscience. 41: 100990. https://doi.org/10.1016/j.fbio.2021.100990

Michalska, A.; Majerska, J.; Brzezowska, J.; Wojdyło, A.; Figiel, A. (2020). The Influence of Maltodextrin and Inulin on the Physico-Chemical Properties of Cranberry Juice Powders. ChemEngineering. 4(1): 12. https://doi.org/10.3390/chemengineering4010012

Moghbeli, S.; Jafari, S.; Maghsoudlou, Y.; Dehnad, D. (2019). A Taguchi approach optimization of date powder production by spray drying with the aid of whey protein-pectin complexes. Powder Technology. 359: 85 – 93. https://doi.org/10.1016/j.powtec.2019.10.013

Moghaddam, A.; Pero, M.; Askari, G. (2017). Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM). Journal of Food Science and Technology. 54 (1): 174–184. doi:10.1007/s13197-016-2449-8

Mousavi, S.; Ghandiha, S. (2022). Optimization of spray drying parameters for encapsulation of Nettle (Urtica dioica L.) extract. LWT - Food Science and Technology. 158: 113149. https://doi.org/10.1016/j.lwt.2022.113149

Pant, k.; Thakur, M.; Chopra, H.; Nanda, V. (2022). Encapsulated bee propolis powder: Drying process optimization and physicochemical characterization. LWT - Food Science and Technology. 155: 112956. https://doi.org/10.1016/j.lwt.2021.112956

Przybył, K.; Gawałek, J.; Koszela, K.; Wawrzyniak, J.; Gierz, L. (2018). Artificial neural networks and electron microscopy to evaluate the quality of fruit and vegetable spray-dried powders. Case study: Strawberry powder. Computers and Electronics in Agriculture. 155: 314–323. https://doi.org/10.1016/J.COMPAG.2018.10.033

Ramírez, F.; Kallarackal, J.; Davenport, T. (2018). Lulo (Solanum quitoense Lam.) reproductive physiology: A review. Scientia Horticulturae. 238: 163 – 176. 10.1016/j.scienta.2018.04.046

Reyes, A. J.; Balaguera, H. E.; Castellanos, D. A. (2024). Effect of temperature, 1-methylcyclopropene, and modified atmosphere packaging on the post-harvest behavior of lulo (Solanum quitoense Lam). Scientia Horticulturae. 329: 113012. https://doi.org/10.1016/J.SCIENTA.2024.113012

Ruano, D.; Ciro, H.; Sepúlveda, J. (2018). Concentrates of sugarcane juice and whey protein: Study of a new powder product obtained by spray drying of their combinations. Powder Technology. 333: 429–438. https://doi.org/10.1016/j.powtec.2018.04.025

Shang, J.; Ritian, J.; Yang, W.; Teng, X.; Sun, H.; Zhang, F.; Zhang, L.; Xu, Y.; Ren, H.; Liu, N. (2023). The effect of different edible fungal polysaccharides on the stability of whey protein isolate solution near isoelectric point. International Journal of Food Science & Technology. 58(3): 1150-1161. https://doi.org/10.1111/ijfs.16259

Shishir, M.; Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology. 65: 49–67. https://doi.org/10.1016/j.tifs.2017.05.006

Souza, M.; Mesquita, A.; Veríssimo, C.; Grosso, C.; Converti, A.; Maciel, M. (2020). Microencapsulation by spray drying of a functional product with mixed juice of acerola and ciriguela fruits containing three probiotic lactobacilli. Drying Technology. 40(6): 1–11. https://doi.org/10.1080/07373937.2020.1862182

Shrivastava, A.; Tripathi, A.; Pau, V.; Chandra, D. (2021). Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. LWT - Food Science and Technology. 151: 112091. https://doi.org/10.1016/j.lwt.2021.112091

Tontul, I.; Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology. 63: 91 – 102. https://doi.org/10.1016/j.tifs.2017.03.009

Tomsone, L.; Galoburda, R.; Kruma, Z.; Durrieu, V.; Cinkmanis, I. (2020). Microencapsulation of Horseradish (Armoracia rusticana L.) Juice Using Spray-Drying. Foods. 9(9): 1332. https://doi.org/10.3390/foods9091332

Wang, B.; Liu, F.; Xiang, J.; He, Y.; Zhang, Z.; Cheng, Z.; Liu, W.; Tan, S. (2021). A critical review of spray-dried amorphous pharmaceuticals: synthesis, analysis and application. International Journal of Pharmaceutics. 594: 120165. 10.1016/j.ijpharm.2020.120165

Yousefi, N.; Abbasi, S. (2022). Food proteins: Solubility & thermal stability improvement techniques. Food Chemistry Advances. 1: 100090. https://doi.org/10.1016/j.focha.2022.100090

Downloads

Published

2024-04-12

How to Cite

Arango-Bedoya, O., Rojas-Inagan, R., Martínez-Suarez, H. ., & Hurtado-Benavides, A. (2024). Optimization of spray drying for lulo (Solanum quitoense Lam.) pulp using response surface methodology. Revista De Ciencias Agrícolas, 41(1), e1227. https://doi.org/10.22267/rcia.20244101.227