contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 40 No. 1 (2023): Revista de Ciencias Agrícolas - January - april 2023

Use of Trained Convolutional Neural Networks for Analysis of Symptoms Caused by Botrytis fabae Sard

DOI
https://doi.org/10.22267/rcia.20234001.198
Submitted
November 27, 2022
Published
2023-04-24

Abstract

This study evaluated the use of convolutional neural networks (CNN) in agricultural disease recognition, specifically for Botrytis fabae symptoms. An experimental bean culture was used to capture images of healthy and affected leaflets, which were then used to perform binary classification and severity classification tests using several CNN models. The results showed that CNN models achieved high accuracy in binary classification, but performance decreased in severity classification due to the complexity of the task. InceptionResNet and ResNet101 were the models that performed best in this task. The study also utilized the Grad-CAM algorithm to identify the most significant B. fabae symptoms recognized by the CNNs. Overall, these findings can be used to develop a smart farming tool for crop production support and plant pathology research.

References

  1. Arnal, J. (2019). Plant disease identification from individual lesions and spots using deep learning. Biosystems Engineering. 180(1): 96–107. https://doi.org/10.1016/j.biosystemseng.2019.02.002
  2. Ateş, A.; Dan, H.; Yilmaz, N.; Konuksal, A. (2017). Botrytis fabae and Bean common mosaic virus (BCMV) are the most common diseases of Faba bean (Vicia faba L.) in TRNC. Akademik Ziraat Dergisi. 6(2): 115–122. 10.29278/azd.371067
  3. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. IEEE. Apr(1): 1–8. https://doi.org/10.1109/CVPR.2017.195
  4. Chollet, F. (2018). Deep learning with Python. Shelter Island: Manning Publications. 86 p.
  5. Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). United States of America: ’Reilly Media. 102p.
  6. Ghosal, S.; Blystone, D.; Singh, A.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. (2018). An explainable deep machine vision framework for plant stress phenotyping. PNAS. Agricultural Sciences. 115(18): 4613–4618. 10.1073/pnas.1716999115
  7. Hammad, M.; Potgieter, J.; Mahmood, K. (2019). Plant disease detection and classification by Deep Learning. Plants. 8(468): 1-22. https://doi.org/10.3390/plants8110468
  8. He, K.; Zhang, X.; Ren, S.; Sun, J. (2016). Deep residual learning for image recognition. IEEE. Dec(1): 1–12. https://doi.org/10.1109/CVPR.2016.90
  9. Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv. arXiv:1704.04861. https://doi.org/10.48550/arXiv.1704.04861
  10. ICARDA- International Center for Agricultural Research in the Dry Areas (2005). Faba bean pathology progress report 2003/4: Food Legume Improvement Program. Syrian Arab Republic: ICARDA. 24p.
  11. Liu, J.; Wang, X. (2021). Plant diseases and pests’ detection based on deep learning: A review. Plant Methods. 17(1): 1-18. 10.1186/s13007-021-00722-9
  12. Lozada, W.; Suarez, M.; Avendaño, E. (2021). Aplicación de redes neuronales convolucionales para la detección del tizón tardío Phytophthora infestans en papa Solanum tuberosum. Revista U.D.C.A Actualidad & Divulgación Científica. 24(2): 1–9. https://doi.org/10.31910/rudca.v24.n2.2021.1917
  13. Maeda, V.; Guerrero, C.; Olvera, C.; Araiza, M.; Espinoza, G.; Bordón, R. (2018). Redes neuronales convolucionales para la detección y clasificación de enfermedades de plantas basadas en imágenes digitales. Rev. Científica Biológico Agropecuaria Tuxpan. 6(1): 275-282.
  14. Olle, M.; Sooväli, P. (2020). The severity of diseases of faba bean depending on sowing rate and variety. Acta Agriculturae Scandinavica. 70(7): 572–577. https://doi.org/10.1080/09064710.2020.1814402
  15. Ouhami, M.; Es-Saady, Y.; Hajji, M.; Hafiane, A.; Canals, R.; Yassa, M. (2020). Deep transfer learning models for tomato disease detection. Including Subseries Lecture Notes in Artificial Intelligence and Lecture. Notes in Bioinformatics. 12119(LNCS): 65-73. 10.1007/978-3-030-51935-3_7
  16. Paymode, A.; Malode, V. (2022). Transfer Learning for multi-crop leaf disease image classification using Convolutional Neural Network VGG. Artificial Intelligence in Agriculture. 6(1): 23-33. https://doi.org/10.1016/j.aiia.2021.12.002
  17. Selvaraju, R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. (2020). Grad-CAM: Visual explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision. 128(2): 336-359. https://doi.org/10.1007/s11263-019-01228-7
  18. Simonyan, K.; Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv. arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556
  19. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. (2016a). Inception-V4, inception-ResNet and the impact of residual connections on learning. arXiv. arXiv:1602.07261v2. https://doi.org/10.48550/arXiv.1602.07261
  20. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. (2016b). Rethinking the inception architecture for computer vision. arXiv. arXiv:1512.00567v3. https://doi.org/10.48550/arXiv.1512.00567
  21. Türkoğlu, M.; Hanbay, D. (2019). Plant disease and pest detection using Deep Learning-based features. Turkish Journal of Electrical Engineering and Computer Sciences. 27(3): 1636–1651. https://doi.org/10.3906/elk-1809-181
  22. Yang, G.; Xu, N.; Hong, Z. (2018). Identification of navel orange lesions by nonlinear Deep Learning algorithm. Engenharia Agrícola. 38(5): 783–796. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v38n5p783-796/2018

Downloads

Download data is not yet available.