Physiological characterization of Carica papaya L. variety UN Cotové

Authors

DOI:

https://doi.org/10.22267/rcia.20234002.210

Keywords:

Photosynthesis, tropical fruits, water stress, individual selection, growth and development.

Abstract

The application of plant physiological principles in genetic improvement allows to approach with greater ease, the solution of the limitations of the agricultural production in an integral and articulated way. For this reason, physiological indicators were used as criteria for the selection of UN Cotové papaya variety plants, which serve as parents for a species breeding program. Eighteen individuals were selected for monthly gas exchange measurements, chlorophyll fluorescence, and leaf area index. The data analysis was done with multivariate non-hierarchical clustering and factorial analysis. Two clusters were generated that did not group morphotypes regarding the gas exchange, quantum yield of Photosystem II (PSII), and leaf area index (LAI). ANOVA established significant differences between plants for most variables. The means were compared with the Tukey test (P < 0.05). Six plants presented better yield, positioning them as a promising material to obtain a papaya variety with outstanding characteristics under tropical dry forest (TDF) conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Allan, P. (2002). Carica papaya responses under cool subtropical growth conditions. Acta Horticulturae. 575: 757-763. 10.17660/ActaHortic.2002.575.89

An, N.; Lv, J.; Zhang, A.; Xiao, C.; Zhang, R.; Chen, P. (2020). Gene expression profiling of papaya (Carica papaya L.) immune response induced by CTS-N after inoculating PLDMV. Gene. 755. 144845. 10.1016/j.gene.2020.144845

Banerjee, A.; Dave, R.N. (2004). Validating clusters using the Hopkins statistic. Budapest, Hungary: Ieeexplore. pp. 149-153. https://doi.org/10.1109/FUZZY.2004.1375706

Botini, N.; Almeida, F.; Cruz, K.; Reis, R.; Vale, E.; Garcia, A.; Santa, C; Silveira, V. (2021). Stagespecific protein regulation during somatic embryo development of Carica papaya L. Golden. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 1869(2): 140561. 10.1016/j.bbapap.2020.140561

Cáez, R.; Alamilla, B.; Gutiérrez, L. (2018). Morphometric analysis and tissue structural continuity evaluation of senescence

progression in fresh cut papaya (Carica papaya L.). Journal of Food Engineering. 216: 107-119. 10.1016/j.jfoodeng.2017.08.004

Campostrini, E.; Schaffer, B.; Ramalho, J.; González, J.; Rodrigues, W.; da Silva, J.; Lima, R. (2018). Chapter 19 - Environmental

Factors Controlling Carbon Assimilation, Growth, and Yield of Papaya (Carica papaya L.) Under Water-Scarcity Scenarios. In:

Chen, X. Spatiotemporal Processes of Plant Phenology: Simulation and Prediction. (pp 481-505). Germany: Springer.

Castillo, A.; Vazquez, A.; Konkol, J.; Vargas, A.; Ploetz, R.; Schaffer, B. (2022). Laurel wilt susceptibility of three avocado (Persea americana Mill.) ecotypes in relation to xylem anatomy, sap flow and leaf gas exchange. Trees. 36: 1649-1663. https://doi.org/10.1007/s00468-022-02319-8

Catarina, R.; Pereira, M.; Vettorazzi, J.; Cortes, D.; de Sousa, P; Azevedo, A.; Viana, A. (2020). Papaya (Carica papaya L.) S1

family recurrent selection: Opportunities and selection alternatives from the base population. Scientia Horticulturae. 260:

10.1016/j.scienta.2019.108848

Chukhutsina, V.U.; Liu, X.; Xu, P.; Croce, R. (2020). Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. Nature Plants. 6: 860–868 https://doi.org/10.1038/s41477-020-0693-4

Clemente, H.; Marler, T. (1996). Drought stress influences gas-exchange responses of papaya leaves to rapid changes in irradiance. Journal of the American Society for Horticultural Science. 121(2): 292-295. 10.21273/JASHS.121.2.292

Córdoba, G.; Monsalve, G.; Hernández, A.; Guerra,H.; Gil, R.; Martínez, B.; Unigarro, M. (2018). Gas exchange in young Hevea brasiliensis (Willd. Ex A. Juss.) Müll. Arg. (Euphorbiaceae) plants in Antioquia (Colombia). Ciencia y

Tecnología Agropecuaria. 19(1): 91-102. 10.21930/rcta.vol19_num1_art:847

FAO - Food and Agriculture Organization. (2020). FAOSTAT Database, Production Statistics. http://www.fao.org/faostat/

es/#data/QC/visualize.

Gil, A.; Miranda, D. (2005). Morfología de la flor y de la semilla de papaya (Carica papaya L.): variedad Maradol e híbrido

Tainung-1. Agronomía Colombiana. 23(2): 217-222.

Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.; Sperry, J.S.; McDowell, N.G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist. 226(6): 1550-1566. https://doi.org/10.1111/nph.16485

Holdridge, L. (1978). Ecología basada en zonas de vida. San José, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura-IICA. 216p.

Jackson, P.; Robertson, M.; Cooper, M; Hammer, G. (1996). The role of physiological understanding in plant breeding; from a breeding perspective. Field Crops Research. 49(1): 11-37. https://doi.org/10.1016/S0378-4290(96)01012-X

Jeyakumar, P.; Kavino, M.; Kumar, N.; Soorianathasundaram, K. (2007). Physiological performance of papaya cultivars under

abiotic stress conditions. https://doi.org/10.17660/ActaHortic.2007.740.25

Kim, M.; Moore, P.; Zee, F.; Fitch, M.; Steiger, D.; Manshardt; Paull R.; Drew, R; Sekioka, T; Ming, R. (2002). Genetic diversity of Carica papaya as revealed by AFLP markers. Genome. 45(3): 503-512. 10.1139/g02-012

Lima, R.; García T.; Lopes, T.; Costa, J.; Vaz, M.; Durán, Z.; Chavez, M.; Glenn, D.; Campostrini, E. (2016). Linking thermal imaging to physiological indicators in Carica papaya L. under different watering regimes. Agricultural

Water Management. 164: 148-157. https://doi.org/10.1016/j.agwat.2015.07.017

Lima; S.; Ferreira, C.; Franca da, C.; Rodrigues, D.; Bernado, W.; Pereira, R.; Campostrini, E. (2021). Partial root-zone drying in fieldgrown papaya: Gas exchange, yield, and water use efficiency. Agricultural Water Management. 243: 106421. https://doi.org/10.1016/j.agwat.2020.106421

Liu, X.; Xiao, Y.; Zi, J.; Yan J.; Li, C.; Du, C.; Wan, j.; Wu, H.; Zheng, B.; Wang.; S.; Liang, O. (2023). Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes. Scientific Reports. 13(611). 10.1038/s41598-023-27917-5

Mahouachi, J.; Socorro, A.; Talon, M. (2006). Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance. Plant and Soil. 281(1): 137-146. https://doi.org/10.1007/s11104-005-3935-3

Manterola, C.; Zavando, D. (2009). Cómo interpretar los “Niveles de Evidencia” en los diferentes escenarios clínicos. Revista Chilena de Cirugía. 61(6): 582-595. http://dx.doi.org/10.4067/S0718-40262009000600017

Marler, T.; Mickelbart, M. (1998). Drought, leaf gas exchange, and chlorophyll fluorescence of field grown papaya. Journal of the American Society for Horticultural Science. 23: 714-718. 10.21273/JASHS.123.4.714

Massignam, A.; Chapman, S.; Hammer, G.; Fukai, S. (2009). Physiological determinants of maize and sunflower grain yield as affected by nitrogen supply. Field Crops Research. 113(3): 256-267. 10.1016/j.fcr.2009.06.001

Mora, N.; Bogantes, A. (2005). Estudio de una mutación en papaya (Carica papaya L.) que produce letalidad de plantas femeninas. Agronomía Mesoamericana. 16(1): 89-94.

Na, S.; Xumin L.; Yong G. (2010). Research on k-means clustering algorithm: An Improved k-means Clustering Algorithm.

https://ieeexplore.ieee.org/abstract/document/5453745

Olubode, O.; Odeyemi, O.; Aiyelaagbe, I. (2016). Influence of environmental factors and production practices on the growth and productivity of pawpaw (Carica papaya L.) in south western Nigeria - A review. Fruits. 71(6): 341-361. 10.1051/fruits/2016027

Paixão, J.; Da Silva, J.; Ruas, K.; Rodrigues, W.; Filho, J.; Bernado, W.; Abreu, P.; Ferreira, S.; Gonzalez, C.; Griffin, L.; Ramalho, C.; Campostrini, E. (2019). Photosynthetic capacity, leaf respiration and growth in two papaya (Carica papaya) genotypes with different leaf chlorophyll concentrations. Annals of Botany. 11(2): plz013. https://doi.org/10.1093/aobpla/plz013

Parkash, V.; Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability. 12(10): 3945.

Qiu, B.; Cao X. (2016). Clustering boundary detection for high dimensional space based on space inversion and Hopkins statistics. Knowledge-Based Systems. 98: 216-225. 10.1016/j.knosys.2016.01.035

Reyes, C. (1996). U.N Cotové. Una nueva variedad de Papaya (Carica papaya L.) para Colombia. Colombia, Medellín:

Universidad Nacional de Colombia. 158p.

Reynolds, M.; Dreccer, F.; Trethowan, R. (2007). Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany. 58(2): 177-186. https://doi.org/10.1093/jxb/erl250

Reynolds, M.; Pask, A.; Mullan, D.; Chavez, D. (2013). Fitomejoramiento Fisiológico I: Enfoques interdisciplinarios para mejorar la adaptación del cultivo. México D.F: CIMMYT. 174p.

Riaño, N.; Tangarife, G.; Osorio, O.; Giraldo, J.; Ospina C.; Obando, D.; Jaramillo, L. (2005). Modelo de crecimiento y captura de carbono para especies forestales en el trópico. https://www.ricclisa.org/images/manualcreft.pdf

R - Development Core Team. (2021). R: ALanguage and environment for statistical computing. http://www.rstudio.com/

Ruas, K.F.; Baroni, D.F.; de Paula Bernado, W.; Paixão, J.S.; dos Santos, G.M.; Filho, J.A.; de Abreu, D.; de Sousa, E.; Rakocevic, M.; Rodrigues, W.; Campostrini, E. (2022). A Carica papaya L. genotype with low leaf chlorophyll concentration copes successfully with soil water stress in the field. Scientia Horticulturae. 293: 110722. https://doi.org/10.1016/j.scienta.2021.110722

Salazar, R.; Arango, L.; Bedoya, L. (1986). Determinación de distancia optima de siembra en papaya, Carica papaya L. para

la zona plana del Valle del Cauca. Revista ICA. 21(2): 66-74.

Santos, E.; Silva, J.; Cavalcante, I.; Marques, A.; Albano, F. (2016). Planting spacing and NK fertilizing on physiological indexes and fruit production of papaya under semiarid climate. Bragantia: 75(1): 63-69. http://dx.doi.org/10.1590/1678-4499.111

Silva, J.; Lucena, C.; Monteiro, S.; Albano, F.; Moura, S. (2016). Growth, physiology and yield of Formosa’papaya’cultivated under different doses of coated and conventional urea. Revista Caatinga. 29(3): 559-568. 10.1590/1983-21252016v29n305rc

Silva, J.; Rodrigues, W.; Fraga, R.; Sousa, P.; Nunes de Lima, R.; Machado, F.; Cabrera, G.; Schaffer, B.; Cuevas, G.; Campostrini, E. (2019). Light, photosynthetic capacity and growth of papaya (Carica papaya L.): A short review. Australian Journal of Crop Science. 13(3): 480-485. https://doi.org/10.21475/ajcs.19.13.03.p1607

Sinclair, T.; Purcell, L.; Vadez, V.; Serraj, R.;King, C.; Nelson, R. (2000). Identification of soybean genotypes with N2 fixation

tolerance to water deficits. Crop Science. 40(6): 1803-1809. https://doi.org/10.2135/cropsci2000.4061803x

Stevens, W.; Ulloa, C.; Pool, A.; Montiel, O. (2001). Flora de Nicaragua. Missouri Botanical Garden Press. 85(1): 943. http://legacy.tropicos.org/Name/6100032?projectid=7andlangid=66

Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. Journal of Experimental Botany. 63(1): 25-31. https://doi.org/10.1093/jxb/err269

Vincent, C.; Rowland, D.L.; Schaffer, B. (2015). The potential for primed acclimation in papaya (Carica papaya L.): Determination of critical water deficit thresholds and physiological response variables. Scientia Horticulturae. 194: 344-352. https://doi.org/10.1016/j.scienta.2015.08.032

Wang, R.; Chang, J.; Li, K.; Lin, T.; Chang, L. (2014). Leaf age and light intensity affect gas exchange parameters and photosynthesis within the developing canopy of field net-house-grown papaya trees. Scientia Horticulturae. 165: 365-373. 10.1016/j.scienta.2013.11.035

Wu, F.; Guo, S.; Huang, W.; Han, Y.; Wang, Z.; Feng, L.; Wang, G.; Li, X.; Lei, Y.; Yang, B.; Xiong, S.; Zhi, X.; Chen, J.; Xin, M.; Wang, Y.; Li, Y. (2023). Adaptation of cotton production to climate change by sowing date optimization and precision resource management. Industrial Crops and Products. 203: 117167. https://doi.org/10.1016/j.indcrop.2023.117167

Downloads

Published

2023-08-28

How to Cite

Loaiza-Ruiz, R. A., Cartagena, J. R. ., Barrera-Sánchez , C. F. ., & Córdoba-Gaona , O. de J. . (2023). Physiological characterization of Carica papaya L. variety UN Cotové. Revista De Ciencias Agrícolas, 40(2), e2210. https://doi.org/10.22267/rcia.20234002.210