contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 1 (2025): Revista de Ciencias Agrícolas - Primer cuatrimestre, Enero - Abril 2025

Methane degradation in biotrickling filters: Recyclable materials as a support medium

DOI
https://doi.org/10.22267/rcia.20254201.250
Submitted
June 7, 2023
Published
2025-04-26

Abstract

Biofiltration is an alternative method for reducing methane, a greenhouse gas with public health risks and climate impacts. However, its feasibility is often limited by the high costs of organic beds and inadequate surface area. This study evaluated the removal efficiency and specific methane removal capacity of biotrickling filters (BTFs). In the air quality laboratory of the Universidad de Nariño, methane was diluted to a concentration of 4% in two BTFs with recycled material (polyethylene terephthalate - BTF1 and expanded polystyrene - BTF2) and inoculated with a methanotrophic microbial consortium. The reactors were operated in parallel for 24 hours per day with countercurrent flow under controlled conditions (25°C, 10 psi, neutral pH), TRLV of 31 min, and a flow rate of 6 L h-1 with a concentration of ~2000 ppmv. BTF1 achieved a maximum removal efficiency (RE) of 75%, higher than BTF2’s 60%, likely due to the greater external specific area of PET.  BTF1 and BTF2 showed a positive influence of temperature and humidity on RE, while pH had an opposite effect. However, BTF2 exhibited a higher specific removal capacity (SRC) due to its superior surface properties, though its performance was limited by filter bed compactation. In conclusion, BTFs using these two materials as support media demonstrate biological efficiency in methane removal, highlighting their potential for treating methane emissions from the anaerobic decomposition of organic matter in agricultural activities.

References

  1. Borchardt, L.; Casco, M. E.; Silvestre-Albero, J. (2018). Methane hydrate in confined spaces: an alternative storage system. ChemPhysChem. 19(11): 1298-1314. https://doi.org/10.1002/cphc.201701250
  2. Cáceres, M.; Dorado, A. D.; Gentina, J. C.; Aroca, G. (2017). Oxidation of methane in biotrickling filters inoculated with methanotrophic bacteria. Environmental Science and Pollution. 24(33): 25702-25712.https://doi.org/10.1007/s11356-016-7133-z
  3. Cai, L.; Wu, D.; Xia, J.; Shi, H.; Kim, H. (2019). Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Science of The Total Environment. 671: 1101-1107. https://doi.org/10.1016/j.scitotenv.2019.03.434
  4. Cai, S.; Phinney, D. M.; Heldman, D. R.; Snyder, A. B. (2020). All treatment parameters affect environmental surface sanitation efficacy, but their relative importance depends on the microbial target. Applied and Environmental Microbiology. 87(1): e01748-20. https://doi.org/10.1128/AEM.01748-20
  5. Carabelli, A. M.; Dubern, J.-F.; Papangeli, M.; Farthing, N. E.; Sanni, O.; Heeb, S.; Hook, A. L.; Alexander, M. R.; Williams, P. (2022). Polymer-directed inhibition of reversible to irreversible attachment prevents Pseudomonas aeruginosa biofilm formation. BioRxiv. 475475. https://doi.org/10.1101/2022.01.08.475475
  6. Cassarini, C.; Bhattarai, S.; Rene, E. R.; Vogt, C.; Musat, N.; Esposito, G.; Lens, P. N. L. (2019a). Enrichment of anaerobic methanotrophs in biotrickling filters using different sulfur compounds as electron acceptor. Environmental Engineering Science. 36(4): 431-443. https://doi.org/10.1089/ees.2018.0283
  7. Cassarini, C.; Rene, E. R.; Bhattarai, S.; Vogt, C.; Musat, N.; Lens, P. N. L. (2019b). Anaerobic methane oxidation coupled to sulfate reduction in a biotrickling filter: Reactor performance and microbial community analysis. Chemosphere. 236: 124290. https://doi.org/10.1016/j.chemosphere.2019.07.021
  8. Chaghouri, M. (2021). Analyse et purification du biogaz par biofiltration et valorisation énergétique par reformage catalytique. Université du Littoral Côte d’Opale. https://tel.archives-ouvertes.fr/tel-03346013
  9. DeFabrizio, S.; Glazener, W.; Hart, C.; Henderson, K.; Kar, J.; Katz, J.; Pozas Pratt, M.; Rogers, M.; Tryggestad, C.; Ulanov, A. (2021). Curbing methane emissions: How five industries can counter a major climate threat. https://acortar.link/8EYv29
  10. Domingues, E.; Fernandes, E.; Gomes, J.; Martins, R. C. (2021). Swine wastewater treatment by Fenton’s process and integrated methodologies involving coagulation and biofiltration. Journal of Cleaner Production. 293: 126105. https://doi.org/10.1016/j.jclepro.2021.126105
  11. Ferdowsi, M.; Khabiri, B.; Buelna, G.; Jones, J. P.; Heitz, M. (2022). Air biofilters for a mixture of organic gaseous pollutants: an approach for industrial applications. Critical Reviews in Biotechnology. 43(7): 1019-1034. https://doi.org/10.1080/07388551.2022.2100735
  12. Gassman, K. I.; Hill, S. G.; Smith, N. D.; Kennedy, M. S.; Tzeng, T.-R.; Beladi Behbahani, S.; Helms, S. M.; O’Neill, L.; DesJardins, J. D. (2022). The effect of surface roughness and chitosan deposition volume on microbial growth in biofilm involving titanium surfaces for orthopedic applications. Materialia. 24: 101481. https://doi.org/10.1016/j.mtla.2022.101481
  13. Gómez-Borraz, T. L.; González-Sánchez, A.; Bonilla-Blancas, W.; Revah, S.; Noyola, A. (2017). Characterization of the biofiltration of methane emissions from municipal anaerobic effluents. Process Biochemistry. 63: 204-213. https://doi.org/10.1016/j.procbio.2017.08.011
  14. Gómez-Cuervo, S.; Alfonsín, C.; Hernández, J.; Feijoo, G.; Moreira, M. T.; Omil, F. (2017). Diffuse methane emissions abatement by organic and inorganic packed biofilters: Assessment of operational and environmental indicators. Journal of Cleaner Production. 143: 1191-1202. https://doi.org/10.1016/j.jclepro.2016.11.185
  15. Jawad, J.; Khalil, M. J.; Sengar, A. K.; Zaidi, S. J. (2021). Experimental analysis and modeling of the methane degradation in a three stage biofilter using composted sawdust as packing media. Journal of Environmental Management. 286: 112214. https://doi.org/10.1016/j.jenvman.2021.112214
  16. Jugnia, L.-B.; Mottiar, Y.; Djuikom, E.; Cabral, A. R.; Greer, C. W. (2012). Effect of compost, nitrogen salts, and NPK fertilizers on methane oxidation potential at different temperatures. Applied Microbiology and Biotechnology. 93(6): 2633-2643. https://doi.org/10.1007/s00253-011-3560-4
  17. Khabiri, B.; Ferdowsi, M.; Buelna, G.; Jones, J. P.; Heitz, M. (2020a). ‏Methane biofiltration under different strategies of nutrient solution addition. Atmospheric Pollution. 11(1): 85-93. https://doi.org/10.1016/j.apr.2019.09.018
  18. Khabiri, B.; Ferdowsi, M.; Buelna, G., Jones, J. P.; Heitz, M. (2020b). Simultaneous biodegradation of methane and styrene in biofilters packed with inorganic supports: Experimental and macrokinetic study. Chemosphere. 252: 126492. https://doi.org/10.1016/j.chemosphere.2020.126492
  19. Khabiri, B.; Ferdowsi, M.; Buelna, G.; Jones, J. P.; Heitz, M. (2022). Bioelimination of low methane concentrations emitted from wastewater treatment plants: A review. Critical Reviews in Biotechnology. 42(3). 450-467. https://doi.org/10.1080/07388551.2021.1940830
  20. Lancon, O.; Hascakir, B. (2018). Contribution of Oil and Gas Production in The US to The Climate Change. https://doi.org/10.2118/191482-ms
  21. Lebrero, R.; Osvaldo, D. F.; Pérez, V.; Cantera, S.; Estrada, J. M.; Muñoz, R. (2019). Biological treatment of gas pollutants in partitioning bioreactors. In: Huerta-Ochoa (ed.). Advances in Chemical Engineering. 54: pp. 239-274. AcademicPress. 274p. https://doi.org/10.1016/bs.ache.2018.12.003
  22. Lebrero, R.; Rodríguez, E.; Collantes, M.; De Juan, C.; Norden, G.; Rosenbom, K.; Muñoz, R. (2021). Comparative performance evaluation of commercial packing materials for malodorants abatement in biofiltration. Applied Sciences. 11(7): 2966. https://doi.org/10.3390/app11072966
  23. Liu, L.-Y.; Xie, G.J.; Xing, D.F.; Liu, B.F.; Ding, J.; Ren, N.Q. (2020a). Biological conversion of methane to polyhydroxyalkanoates: Current advances, challenges, and perspectives. Environmental Science and Ecotechnology. 2: 100029. https://doi.org/10.1016/j.ese.2020.100029
  24. Liu, Q.; Liu, J.; Liu, H.; Liang, L.; Cai, Y.; Wang, X.; Li, C. (2020b). Vegetation dynamics under water-level fluctuations: Implications for wetland restoration. Journal of Hydrology. 581: 124418. https://doi.org/10.1016/j.jhydrol.2019.124418
  25. Mayhew, M. J.; Simonoff, J. S. (2015). Non-white, no more: Effect coding as an alternative to dummy coding with implications for higher education researchers. Journal of College Student Development. 56(2): 170–175. https://doi.org/10.1353/csd.2015.0019
  26. Mayer, F.; Enzmann, F.; Lopez, A. M.; Holtmann, D. (2019). Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide. Bioresource Technology. 289: 121706. https://doi.org/10.1016/j.biortech.2019.121706
  27. Merouani, E. F. O.; Khabiri, B.; Ferdowsi, M.; Benyoussef, E. H.; Malhautier, L.; Buelna, G.; Jones, J. P.; Heitz, M. (2022). Biofiltration of methane in presence of ethylbenzene or xylene. Atmospheric Pollution Research. 13(1): 101271. https://doi.org/10.1016/j.apr.2021.101271
  28. Nisbet, E. G.; Fisher, R. E.; Lowry, D.; France, J. L.; Allen, G.; Bakkaloglu, S.; Broderick, T. J.; Cain, M.; Coleman, M.; Fernandez, J.; Forster, G.; Griffiths, P. T.; Iverach, C. P.; Kelly, B. F. J.; Manning, M. R.; Nisbet-Jones, P. B. R.; Pyle, J. A.; Townsend-Small, A.; al-Shalaan, A.; … Zazzeri, G. (2020). Methane mitigation: Methods to reduce emissions, on the path to the Paris agreement. Reviews of Geophysics. 58(1): e2019RG000675. https://doi.org/10.1029/2019RG000675
  29. Pecorini, I.; Rossi, E.; Iannelli, R. (2020). Mitigation of methane, NMVOCs and odor emissions in active and passive biofiltration systems at municipal solid waste landfills. Sustainability. 12(8): 3203. https://doi.org/10.3390/su12083203
  30. Pratt, C.; Tate, K. (2018). Mitigating methane: emerging technologies to combat climate change’s second leading contributor. Environmental Science & Technology. 52(11): 6084-6097. https://doi.org/10.1021/acs.est.7b04711
  31. Su, Q.; Dai, D.; Liao, Y.; Han, H.; Wu, J.; Ren, Z. (2023). Synthetic microbial consortia to enhance the biodegradation of compost odor by biotrickling filter. Bioresource Technology. 387: 129698. https://doi.org/10.1016/j.biortech.2023.129698
  32. Reza Bacelis, G.; Sauri Riancho, M.R; Castillo Borges, E.R (2009). Aprovechamiento de la composta para la oxidación de metano. Revista Aidis de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica. 1(1): 1-13
  33. Sáez-Orviz, S.; Lebrero, R.; Terrén, L.; Doñate, S.; Esclapez M.D.; Saúco, L.; Muñoz, R. (2024). Evaluation of the performance of new plastic packing materials from plastic waste in biotrickling filters for odour removal. Process Safety and Environmental Protection. 191(B): 2361-2372. https://doi.org/10.1016/j.psep.2024.10.009.
  34. Sanucci, C. (2021). Evaluación de los niveles de metano en zona de producción petrolera mediante el uso de imágenes satelitales bajo el enfoque de la ciencia de datos. http://sedici.unlp.edu.ar/handle/10915/133520
  35. Sauer, K.; Stoodley, P.; Goeres, D. M.; Hall-Stoodley, L.: Burmølle, M.; Stewart, P. S.; Bjarnsholt, T. (2022). The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nature Reviews Microbiology. 20: 608–620. https://doi.org/10.1038/s41579-022-00767-0
  36. Soeder, D. J. (2021). Greenhouse gas sources and mitigation strategies from a geosciences perspective. Advances in Geo-Energy Research. 5(3): 274-285. https://doi.org/10.46690/ager.2021.03.04
  37. Thomasen, T. B.; Scheutz, C.; Kjeldsen, P. (2019). Treatment of landfill gas with low methane content by biocover systems. Waste Management. 84: 29-37. https://doi.org/10.1016/j.wasman.2018.11.011
  38. Venturini, M.; Rossen, A.; Bucci, P.; Silva Paulo, P. (2022). Applying the nernst equation to control ORP in denitrification process for uranium-containing nuclear effluent with high loads of nitrogen and COD. Water. 14(14): 2227. https://doi.org/10.3390/w14142227
  39. Vikrant, K.; Kailasa, S. K.; Tsang, D. C. W.; Lee, S. S.; Kumar, P.; Giri, B. S.; Singh, R. S.; Kim, K.-H. (2018). Biofiltration of hydrogen sulfide: Trends and challenges. Journal of Cleaner Production. 187: 131-147. https://doi.org/10.1016/j.jclepro.2018.03.188
  40. Wu, H.; Yan, H.; Quan, Y.; Zhao, H.; Jiang, N.; Yin, C. (2018). Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. Journal of Environmental Management. 222: 409-419. https://doi.org/10.1016/j.jenvman.2018.06.001
  41. Zimmermann, M.; Boysen, B.; Ebrahimi, E.; Fischer, M.; Henzen, E.; Hilsdorf, J.; Kleber, J.; Lackner, S.; Parsa, A.; Rudolph, K.U.; Schöller, S.; Shalizi, F.; Sinn, J.; Zinkernagel, J. (2021). Replication Guideline for Water Reuse in Agricultural Irrigation. https://acortar.link/CP7qJQ

Downloads

Download data is not yet available.