Genetic variability of wild palms Euterpe precatoria, Euterpe oleracea and Mauritia flexuosa with molecular markers ISSR

Authors

DOI:

https://doi.org/10.22267/rcia.20234003.212

Keywords:

Arecaceae, genetic diversity , gene flow , germplasm, plant breeding, polymorphism

Abstract

Wild palms constitute a group of plants of particular economic importance in the tropics, being a valuable source for obtaining construction materials, fabrics, fuel, food, ornamental and medicinal plants. Despite their economic, social, and environmental importance, the genetic variability existing in wild palms, mainly of the genus Mauritia and Euterpe, is unknown, which limits their potential use and the identification of promising genotypes to be included in recombination programs. The genetic variability of three wild palm species (Euterpe oleracea, Euterpe precatoria, and Mauritia flexuosa) was evaluated using Inter-Simple Sequence Repeat (ISSR) markers. A total of 51 genotypes were analyzed with seven ISSR primers, which generated a total of 153 bands, with a percentage of polymorphic loci of 90.24%. The cluster analysis revealed the formation of six groups at a similarity level of 37%, grouping the palm genotypes by species and geographical origin. Molecular variance analysis revealed that within group variations contributed more to genetic diversity (89%) than between group variations (11%). The average value of Fstwas 0.20, demonstrating moderate genetic differentiation. The high genetic variability found in this study indicates the valuable genetic potential present in palm germplasm, which could be used for future improvement programs of the species.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aranguren, C.I.; Galeano, G.; Bernal, R. (2014). Manejo actual del Asaí (Euterpe precatoria Mart.) para la producción de frutos en el Sur de la Amazonia Colombiana. Colombia Forestal. 17(1): 77-99.

Bernal, R.; Torres, C.; García, N.; Isaza, C.; Navarro, J.; Vallejo, M. (2011). Palm Management in South America. The Botanical Review. 77(4): 607-646. https://doi.org/10.1007/s12229-011-9088-6

Brancalion, P.H.; Oliveira, G.C.X.; Zucchi, M.I.; Novello, M.; van Melis, J.; Zocchi, S.S.; Chazdon, R.L.; Rodrigues, R.R. (2018). Phenotypic plasticity and local adaptation favor range expansion of a Neotropical palm. Ecology and Evolution. 8(43): 7462-7475. https://doi.org/10.1002/ece3.4248

Calzavara, B. (1972). As possibilidades do Açaizeiro no Estuário Amazônico. Boletim da Faculdade de Ciências Agrárias do Pará. (5): 1-103.

Cardona, C.C.; Morillo, C.Y.; Morillo, C.A.; Ochoa, I. (2018). Genetic diversity in oil palm (Elaeis guineensis Jacq.) using RAM (Random Amplified Microsatellites). Bragantia. 77(4): 546-556. https://doi.org/10.1590/1678-4499.2017385

Carvalho, M.S.; Ferreira, M.F.; Oliveira, W.B.; Marçal, T.; Guilhen, J.H.; Mengarda, L.; Ferreira, A. (2020). Genetic diversity and population structure of Euterpe edulis by REML/BLUP analysis of fruit morphology and microsatellite markers. Crop Breeding and Applied Biotechnology. 20(4): e31662048. https://doi.org/10.1590/1984-70332020v20n4a61

Castro, D.A.; Costa, T.S.; Cardoso, A.S.; Ramos, H.C.; López, J.A.; Diniz, L.E. (2022). Genetic structure analysis of Mauritia flexuosa natural population from the Lençóis Maranhenses region using microsatellite markers. Scientia Agricola. 79(1): e20200112. https://doi.org/10.1590/1678-992X-2020-0112

Chagas, K.P.; Sousa, R.F.; Fajardo, C.G.; Vieira, F.A. (2015). Seleção de marcadores ISSR e diversidade genética em uma população de Elaeis guineensis. Revista Brasileira de Ciências Agrárias. 10(1): 147-152. https://doi.org/10.5039/agraria.v10i1a5133

Clarke, C.; Schreckenberg, K.; Haq, N.N. (2011). Fruit products for profit. 16° edition. Rome: Food and Agriculture Organization of the United Nations. 16-80p.

Coelho, G.M.; Santos A.S.; de Menezes, I.P.; Tarazi, R.; Souza F.M.; Silva, M.D.; Gaiotto, F.A. (2020). Genetic structure among morphotypes of the endangered Brazilian palm Euterpe edulis Mart (Arecaceae). Ecology and Evolution. 10(12): 6039-6048. https://doi.org/10.1002/ece3.6348

Escobar, S.; Pintaud, J.C.; Balslev, H.; Bernal, R.; Moraes Ramírez, M.; Millán, B.; Montúfar, R. (2018). Genetic structuring in a Neotropical palm analyzed through an Andean orogenesis‐scenario. Ecology and Evolution. 8(16): 8030-8042. https://doi.org/10.1002/ece3.4216

Freire, J.A.P.; Barros, K.B.; Lima, L.K.; Martins, J.M.; Araújo, Y.C.; Oliveira, G.L.; Aquino, J.A.; Ferreira, P.M. (2016). Phytochemistry profile, nutritional properties and pharmacological activities of Mauritia flexuosa. Journal of Food Science. 81: 611-622. https://doi.org/10.1111/1750-3841.13529

Galate, R. dos, S.; Mota, M.G.; da, C.; Gaia, J.M.D.; Costa, M. do, S.S. (2014). Distância fenotípica entre matrizes de açaizeiro (Euterpe oleracea Mart.) procedentes do nordeste do Pará. Semina: Ciências Agrárias. 35(4): 1667-1681. https://doi.org/10.5433/1679-0359.2014v35n4p1667

Galeano, G.; Bernal, R. (2005). Palmas. En: Calderón, E.; Galeano, G.; García, N. Libro Rojo de Plantas en Colombia. pp. 59-224. Volumen 2. Bogotá, Colombia: Instituto Alexander von Humboldt Instituto de Ciencias Naturales de la Universidad Nacional de Colombia.

Galeano, G.; Bernal, R. (2010). Palmas de Colombia. Guía de Campo. Colombia, Bogotá: Editorial Universidad Nacional de Colombia. 688p.

Galeano, G.; Bernal, R.; Figueroa, C.Y. (2015). Plan de conservación, manejo y uso sostenible de las palmas de Colombia. Primera Edición. Bogotá: Editorial Universidad Nacional de Colombia, Bogotá. 134 pp.

Gan, S.T.; Teo, C.J.; Manirasa, S.; Wong, W.C.; Wong, C.K. (2021). Assessment of genetic diversity and population structure of oil palm (Elaeis guineensis Jacq.) field genebank: A step towards molecular-assisted germplasm conservation. PLoS ONE. 16(7): e0255418. https://doi.org/10.1371/journal.pone.0255418

Ghanbari, M.A.; Salehi, H.; Moghadam, A. (2022). Genetic diversity assessment of Iranian Kentucky Bluegrass accessions: I. ISSR markers and their association with habitat suitability within and between different ecoregions. Molecular Biotechnology. 64(2): 1244-1258. https://doi.org/10.1007/s12033-022-00502-3

Gilmore, M.P.; Endress, B.A.; Horn, C.M. (2013). The socio-cultural importance of Mauritia flexuosa palm swamps (aguajales) and implications for multiuse management in two Maijuna communities of the Peruvian Amazon. Journal of Ethnobiology and Ethnomedicine. 9(1): 29. https://doi.org/10.1186/1746-4269-9-29

Gomes, L.R.; Lopes, M.T.; Bentes, J.L.; Barros, W.S.; Neto, P.Q.; Contim, L.A. (2011). Genetic diversity in natural populations of Buriti (Mauritia flexuosa L. f.). Crop Breeding and Applied Biotechnology. 11(11): 216-223. https://doi.org/10.1590/S1984-70332011000300003

Gupta, P.; Mishra, A.; Lal, R.K.; Dhawan, S.S. (2021). DNA fingerprinting and genetic relationships similarities among the accessions/species of Ocimum using SCoT and ISSR markers system. Molecular Biotechnology. 63(2): 446-457. https://doi.org/10.1007/s12033-021-00316-9

Hocaoglu-Ozyigit, A.; Ucar, B.; Altay, V.; Ozyigit, I.I. (2022). Genetic diversity and phylogenetic analyses of Turkish cotton (Gossypium hirsutum L.) lines using ISSR markers and chloroplast trnL-Fregions. Journal of Natural Fibers. 19(5): 1837-1850. https://doi.org/10.1080/15440478.2020.1788493

Ithnin, M.; Teh, C.K.; Ratnam, W. (2017). Genetic diversity of Elaeis oleifera (HBK) Cortes populations using cross species SSRs: implication's for germplasm utilization and conservation. BMC Genetics. 18(1): 37. https://doi.org/10.1186/s12863-017-0505-7

Koole, H.F.; Da silva, M.A.; Gozzo, F.; De Souza, A.Q.; De Souza, A.D. (2013). Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.). Food Research International. 51(2): 467-473. https://doi.org/10.1016/j.foodres.2013.01.039

Ma, S.; Khayatnezhad, M.; Minaeifar, A. (2021). Genetic diversity and relationships among Hypericum L. species by ISSR markers: a high value medicinal plant from Northern of Iran. Caryologia. 74(1): 97-107. https://doi.org/10.36253/caryologia-968

MADR - Ministerio de Agricultura y Desarrollo Rural. (2021). Cadena de Palma de Aceite. https://sioc.minagricultura.gov.co/Palma/Documentos/2021-06-30%20Cifras%20Sectoriales.pdf

Madar, U.; Thangadurai, D.; Kulkarni, S.S.; Gai, P.; Saliyavar, B. (2019). Genetic variation in Arenga wightii Griff. (Arecaceae) populations using Inter Simple Sequence Repeat (ISSR) markers. Plant Archives. 19(1): 1646-1652.

Melo, W.A.; Freitas, C.G.; Bacon, C.D.; Collevatti, R.G. (2018). The road to evolutionary success: Insights from the demographic history of an Amazonian palm. Heredity. 121(2): 183–195. https://doi.org/10.1038/s41437-018-0074-1

Mesa-Castellanos, L.; Toro, B.A.; Isaza, A.C. (2017). Manejo de Mauritia flexuosa L.f. para la producción de artesanías en la altillanura colombiana. Colombia Forestal. 20(1): 85-101. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a07

Milanez, J.T.; Neves, L.C.; Silva, P.M.; Bastos, V.J.; Shahab, M.; Colombo, R.C.; Roberto, S.R. (2016). Pre–harvest studies of buriti (Mauritia flexuosa L. f.), a Brazilian native fruit, for the characterization of ideal harvest point and ripening stages. Scientia Horticulturae. 202: 77-82. https://doi.org/10.1016/j.scienta.2016.02.026

Miller, M.P. (1997). Tools for population genetic analysis (TFPGA), 1.3: A windows program for the analysis of allozyme and molecular population genetic data. https://www.scienceopen.com/document?vid=91146e4d-17b1-42e6-b5e0-7717b8d6600d

Mir, M.A.; Mansoor, S.; Sugapriya, M.; Alyemeni, M.N.; Wijaya, L.; Ah-mad, P. (2021). Deciphering genetic diversity analysis of saffron (Crocus sativus L.) using RAPD and ISSR markers. Saudi Journal of Biological Sciences. 28(2): 1308-1317. https://doi.org/10.1016/j.sjbs.2020.11.063

Montúfar, R.; Recalde, A.; Couvreur, T.L.P. (2020). High genetic diversity with low connectivity among Mauritia flexuosa (Arecaceae) stands from Ecuadorean Amazonia. Biotropica. 53(1): 152-161. https://doi.org/10.1111/btp.12855

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America. 70(12): 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321

Nei, M.; Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America. 76(10): 5269-5273. https://doi.org/10.1073/pnas.76.10.5269

Peakall, R.; Smouse, P. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 28(19): 2537-2539. https://doi.org/10.1093/bioinformatics/bts460

Pinheiro, L.G.; Chagas, K.P.; Freire, A.S.M.; Ferreira, M.C.; Fajardo, C.G.; Vieira, F.A. (2017). Anthropization as a determinant factor in the genetic structure of Copernicia prunifera (Arecaceae). Genetics and Molecular Research. 16(3). https://doi.org/10.4238/gmr16039768

Quiroga, Y.; Gómez, M.S.; Lares, M. (2017). Componentes Bioactivos del Asai (Euterpe oleracea Mart. y Euterpe precatoria Mart.) y su efecto sobre la salud. Archivos Venezolanos de Farmacología y Terapéutica. 36(3): 58-66.

Ramos, S.L.; Dequigiovanni, G.; Sebbenn, A.M.; Lopes, M.T.; de Macêdo, J.L.; Veasey, E.A.; Alves-Pereira, A.; da Silva, P.P.; Garcia, J.N.; Kageyama, P.Y. (2018). Paternity analysis, pollen flow, and spatial genetic structure of a natural population of Euterpe precatoria in the Brazilian Amazon. Ecology and Evolution. 8(22): 11143-11157. https://doi.org/10.1002/ece3.4582

Ramos, S.L.F.; Dequigiovanni, G.; Lopes, M.T.G.; Aguiar, A.V.; Lopes, R.; Veasey, E.A.; Macêdo, A.L.V.; Alves-Pereira, A.; Fraxe, T.J.P.; Wrege, M.S.; Garcia, J.N. (2021). Genetic structure in populations of Euterpe precatoria Mart. In the Brazilian Amazon. Frontiers in Ecology and Evolution. 8:603448. https://doi.org/10.3389/fevo.2020.603448

Rocha, E.; Viana, V.M. (2004). Manejo de Euterpe precatoria Mart. (Açaí) no seringal Caquetá, Acre, Brasil. Scentia Forestalis. 65: 59-69.

Rossi, F.S.; Rossi, A.; Dardengo, J.D.; Brauwers, L.R.; da Silva, M.L.; Sebbenn, A.M. (2014). Diversidade genética em populações naturais de Mauritia flexuosa L.f. (Arecaceae) com uso de marcadores ISSR. Scientia Forestalis. 42(104): 631-639.

Sabir, J.S.; Abo-Aba, S.; Bafeel, S.; Zari, T.A.; Edris, S.; Shokry, A.; El-Domyati, F.M. (2014). Characterization of ten date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia using AFLP and ISSR markers. Comptes Rendus Biologies. 337(1): 6-18. https://doi.org/10.1016/j.crvi.2013.11.003

Sander, N.L.; Pérez-Zavala, F.; Da Silva, C.J.; Arruda, J.C.; Pulido, M.T.; Barelli, M.; Rossi, A.B.; Viana, A.P.; Boechat, M.S.B.; Bacon, C.D.; Cibrián-Jaramillo, A. (2018). Rivers shape population genetic structure in Mauritia flexuosa (Arecaceae). Ecology and Evolution. 8(13): 6589-6598. https://doi.org/10.1002/ece3.4142

Santos-Cochev-da-Cruz, J.; de-Freitas-Encinas-Dardengo, J.; Souza-Rodrigues, A.; Vicente-Tiago, A.; Moreno-de-Pedri, E.; Müller-Zortéa, K.; Gonçalves-Garcia, M.; Alves-da-Silva-Neves, S.; Bandini-Rossi, A. (2022). Diversity and genetic structure of natural populations of the palm tree Euterpe precatoria (Arecaceae). Revista de Biología Tropical. 70(1): 213-221. https://doi.org/10.15517/rev.biol.trop.v70i1.42942

Speranza, P.; Falcão, A.O.; Macedo, J.A.; Silva, L.H.; Rodrigues, A.M.; Macedo, G.A. (2016). Amazonian Buriti oil: chemical characterization and antioxidant potential. Grasas Aceites. 67(2): 1-9. https://doi.org/10.3989/gya.0622152

Sugai, K.; Watanabe, S.; Kuishi, T.; Imura, S.; Ishigaki, K.; Yokota, M.; Suyama, Y. (2016). Extremely low genetic diversity of the northern limit populations of Nypa fruticans (Arecaceae) on Iriomote Island, Japan. Conservation genetics. 17(1): 221-228. https://doi.org/10.1007/s10592-015-0773-6

Trujillo-González, J.M.; Torres, M.A.; Santana-Castañeda, E. (2011). La palma de Moriche (Mauritia flexuosa L.f) un ecosistema estratégico. Orinoquia. 15(1): 62-70. https://doi.org/10.22579/20112629.43

Valois-Cuesta, H.; Martínez-Ruiz, C.; Rentería Cuesta, Y.Y.; Panesso Hinestroza, S.M. (2013). Diversidad, patrones de uso y conservación de palmas Arecaceae en bosques pluviales del Chocó, Colombia. Revista de Biología Tropical. 61(4): 1869-1889. https://doi.org/10.15517/rbt.v61i4.12858

Virapongse, A. (2017a). Social mechanisms and mobility: Buriti Palm (Mauritia flexuosa) extractivism in Brazil. Human Ecology. 45(1): 119-129. https://doi.org/10.1007/s10745-016-9887-9

Virapongse, A.; Endress, B.A.; Gilmore, M.P.; Horn, C.; Romulo, C. (2017b). Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Global Ecology and Conservation. 10: 70-92. https://doi.org/10.1016/j.gecco.2016.12.005

Wright, S. (1978). Evolution and the genetics of populations, variability within and among natural populations. 4 ed. Chicago: University of Chicago Press.

Yamaguchi, K.K.; Pereira, L.F.; Lamarão, C.V.; Lima, E.S.; da Veiga-Junior, V.F. (2015). Amazon acai: chemistry and biological activities: a review. Food Chemistry. 179: 137–151. https://doi.org/10.1016/j.foodchem.2015.01.055

Yancheva, S.; Mavromatis, P. (2021). Phylogenetic analysis of selected olive genotypes by ISSR markers. Journal of Central European Agriculture. 22(1): 127-132. https://doi.org/10.5513/JCEA01/22.1.2960

Yusuf, A.O.; Culham, A.; Aljuhani, W.; Ataga, C.D.; Hamza, A.M.; Odewale, J.O.; Enaberue, L.O. (2015). Genetic diversity of Nigerian date palm (Phoenix dactylifera) germplasm based on microsatellite markers. International Journal of Bio-Science and Bio-Technology. 7(1): 121-132. https://doi.org/10.14257/ijbsbt.2015.7.1.12

Downloads

Published

2023-11-11

How to Cite

Morillo-Coronado, Y., Rojas-González, S. ., Morillo-Coronado, A. C. ., Castañeda-Cardona, C. C. ., Mendoza-Romero, K. J., & Marín-Colorado, J. . (2023). Genetic variability of wild palms Euterpe precatoria, Euterpe oleracea and Mauritia flexuosa with molecular markers ISSR. Revista De Ciencias Agrícolas, 40(3), e3212. https://doi.org/10.22267/rcia.20234003.212