contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 40 No. 3 (2023): Revista de Ciencias Agrícolas - Tercer semestre, Septiembre - Diciembre 2023

Genetic variability of wild palms Euterpe precatoria, Euterpe oleracea and Mauritia flexuosa with molecular markers ISSR

DOI
https://doi.org/10.22267/rcia.20234003.212
Submitted
July 24, 2023
Published
2023-11-11

Abstract

Wild palms constitute a group of plants of particular economic importance in the tropics, being a valuable source for obtaining construction materials, fabrics, fuel, food, ornamental and medicinal plants. Despite their economic, social, and environmental importance, the genetic variability existing in wild palms, mainly of the genus Mauritia and Euterpe, is unknown, which limits their potential use and the identification of promising genotypes to be included in recombination programs. The genetic variability of three wild palm species (Euterpe oleracea, Euterpe precatoria, and Mauritia flexuosa) was evaluated using Inter-Simple Sequence Repeat (ISSR) markers. A total of 51 genotypes were analyzed with seven ISSR primers, which generated a total of 153 bands, with a percentage of polymorphic loci of 90.24%. The cluster analysis revealed the formation of six groups at a similarity level of 37%, grouping the palm genotypes by species and geographical origin. Molecular variance analysis revealed that within group variations contributed more to genetic diversity (89%) than between group variations (11%). The average value of Fst was 0.20, demonstrating moderate genetic differentiation. The high genetic variability found in this study indicates the valuable genetic potential present in palm germplasm, which could be used for future improvement programs of the species.

References

  1. Aranguren, C.I.; Galeano, G.; Bernal, R. (2014). Manejo actual del Asaí (Euterpe precatoria Mart.) para la producción de frutos en el Sur de la Amazonia Colombiana. Colombia Forestal. 17(1): 77-99.
  2. Bernal, R.; Torres, C.; García, N.; Isaza, C.; Navarro, J.; Vallejo, M. (2011). Palm Management in South America. The Botanical Review. 77(4): 607-646. https://doi.org/10.1007/s12229-011-9088-6
  3. Brancalion, P.H.; Oliveira, G.C.X.; Zucchi, M.I.; Novello, M.; van Melis, J.; Zocchi, S.S.; Chazdon, R.L.; Rodrigues, R.R. (2018). Phenotypic plasticity and local adaptation favor range expansion of a Neotropical palm. Ecology and Evolution. 8(43): 7462-7475. https://doi.org/10.1002/ece3.4248
  4. Calzavara, B. (1972). As possibilidades do Açaizeiro no Estuário Amazônico. Boletim da Faculdade de Ciências Agrárias do Pará. (5): 1-103.
  5. Cardona, C.C.; Morillo, C.Y.; Morillo, C.A.; Ochoa, I. (2018). Genetic diversity in oil palm (Elaeis guineensis Jacq.) using RAM (Random Amplified Microsatellites). Bragantia. 77(4): 546-556. https://doi.org/10.1590/1678-4499.2017385
  6. Carvalho, M.S.; Ferreira, M.F.; Oliveira, W.B.; Marçal, T.; Guilhen, J.H.; Mengarda, L.; Ferreira, A. (2020). Genetic diversity and population structure of Euterpe edulis by REML/BLUP analysis of fruit morphology and microsatellite markers. Crop Breeding and Applied Biotechnology. 20(4): e31662048. https://doi.org/10.1590/1984-70332020v20n4a61
  7. Castro, D.A.; Costa, T.S.; Cardoso, A.S.; Ramos, H.C.; López, J.A.; Diniz, L.E. (2022). Genetic structure analysis of Mauritia flexuosa natural population from the Lençóis Maranhenses region using microsatellite markers. Scientia Agricola. 79(1): e20200112. https://doi.org/10.1590/1678-992X-2020-0112
  8. Chagas, K.P.; Sousa, R.F.; Fajardo, C.G.; Vieira, F.A. (2015). Seleção de marcadores ISSR e diversidade genética em uma população de Elaeis guineensis. Revista Brasileira de Ciências Agrárias. 10(1): 147-152. https://doi.org/10.5039/agraria.v10i1a5133
  9. Clarke, C.; Schreckenberg, K.; Haq, N.N. (2011). Fruit products for profit. 16° edition. Rome: Food and Agriculture Organization of the United Nations. 16-80p.
  10. Coelho, G.M.; Santos A.S.; de Menezes, I.P.; Tarazi, R.; Souza F.M.; Silva, M.D.; Gaiotto, F.A. (2020). Genetic structure among morphotypes of the endangered Brazilian palm Euterpe edulis Mart (Arecaceae). Ecology and Evolution. 10(12): 6039-6048. https://doi.org/10.1002/ece3.6348
  11. Escobar, S.; Pintaud, J.C.; Balslev, H.; Bernal, R.; Moraes Ramírez, M.; Millán, B.; Montúfar, R. (2018). Genetic structuring in a Neotropical palm analyzed through an Andean orogenesis‐scenario. Ecology and Evolution. 8(16): 8030-8042. https://doi.org/10.1002/ece3.4216
  12. Freire, J.A.P.; Barros, K.B.; Lima, L.K.; Martins, J.M.; Araújo, Y.C.; Oliveira, G.L.; Aquino, J.A.; Ferreira, P.M. (2016). Phytochemistry profile, nutritional properties and pharmacological activities of Mauritia flexuosa. Journal of Food Science. 81: 611-622. https://doi.org/10.1111/1750-3841.13529
  13. Galate, R. dos, S.; Mota, M.G.; da, C.; Gaia, J.M.D.; Costa, M. do, S.S. (2014). Distância fenotípica entre matrizes de açaizeiro (Euterpe oleracea Mart.) procedentes do nordeste do Pará. Semina: Ciências Agrárias. 35(4): 1667-1681. https://doi.org/10.5433/1679-0359.2014v35n4p1667
  14. Galeano, G.; Bernal, R. (2005). Palmas. En: Calderón, E.; Galeano, G.; García, N. Libro Rojo de Plantas en Colombia. pp. 59-224. Volumen 2. Bogotá, Colombia: Instituto Alexander von Humboldt Instituto de Ciencias Naturales de la Universidad Nacional de Colombia.
  15. Galeano, G.; Bernal, R. (2010). Palmas de Colombia. Guía de Campo. Colombia, Bogotá: Editorial Universidad Nacional de Colombia. 688p.
  16. Galeano, G.; Bernal, R.; Figueroa, C.Y. (2015). Plan de conservación, manejo y uso sostenible de las palmas de Colombia. Primera Edición. Bogotá: Editorial Universidad Nacional de Colombia, Bogotá. 134 pp.
  17. Gan, S.T.; Teo, C.J.; Manirasa, S.; Wong, W.C.; Wong, C.K. (2021). Assessment of genetic diversity and population structure of oil palm (Elaeis guineensis Jacq.) field genebank: A step towards molecular-assisted germplasm conservation. PLoS ONE. 16(7): e0255418. https://doi.org/10.1371/journal.pone.0255418
  18. Ghanbari, M.A.; Salehi, H.; Moghadam, A. (2022). Genetic diversity assessment of Iranian Kentucky Bluegrass accessions: I. ISSR markers and their association with habitat suitability within and between different ecoregions. Molecular Biotechnology. 64(2): 1244-1258. https://doi.org/10.1007/s12033-022-00502-3
  19. Gilmore, M.P.; Endress, B.A.; Horn, C.M. (2013). The socio-cultural importance of Mauritia flexuosa palm swamps (aguajales) and implications for multiuse management in two Maijuna communities of the Peruvian Amazon. Journal of Ethnobiology and Ethnomedicine. 9(1): 29. https://doi.org/10.1186/1746-4269-9-29
  20. Gomes, L.R.; Lopes, M.T.; Bentes, J.L.; Barros, W.S.; Neto, P.Q.; Contim, L.A. (2011). Genetic diversity in natural populations of Buriti (Mauritia flexuosa L. f.). Crop Breeding and Applied Biotechnology. 11(11): 216-223. https://doi.org/10.1590/S1984-70332011000300003
  21. Gupta, P.; Mishra, A.; Lal, R.K.; Dhawan, S.S. (2021). DNA fingerprinting and genetic relationships similarities among the accessions/species of Ocimum using SCoT and ISSR markers system. Molecular Biotechnology. 63(2): 446-457. https://doi.org/10.1007/s12033-021-00316-9
  22. Hocaoglu-Ozyigit, A.; Ucar, B.; Altay, V.; Ozyigit, I.I. (2022). Genetic diversity and phylogenetic analyses of Turkish cotton (Gossypium hirsutum L.) lines using ISSR markers and chloroplast trnL-Fregions. Journal of Natural Fibers. 19(5): 1837-1850. https://doi.org/10.1080/15440478.2020.1788493
  23. Ithnin, M.; Teh, C.K.; Ratnam, W. (2017). Genetic diversity of Elaeis oleifera (HBK) Cortes populations using cross species SSRs: implication's for germplasm utilization and conservation. BMC Genetics. 18(1): 37. https://doi.org/10.1186/s12863-017-0505-7
  24. Koole, H.F.; Da silva, M.A.; Gozzo, F.; De Souza, A.Q.; De Souza, A.D. (2013). Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.). Food Research International. 51(2): 467-473. https://doi.org/10.1016/j.foodres.2013.01.039
  25. Ma, S.; Khayatnezhad, M.; Minaeifar, A. (2021). Genetic diversity and relationships among Hypericum L. species by ISSR markers: a high value medicinal plant from Northern of Iran. Caryologia. 74(1): 97-107. https://doi.org/10.36253/caryologia-968
  26. MADR - Ministerio de Agricultura y Desarrollo Rural. (2021). Cadena de Palma de Aceite. https://sioc.minagricultura.gov.co/Palma/Documentos/2021-06-30%20Cifras%20Sectoriales.pdf
  27. Madar, U.; Thangadurai, D.; Kulkarni, S.S.; Gai, P.; Saliyavar, B. (2019). Genetic variation in Arenga wightii Griff. (Arecaceae) populations using Inter Simple Sequence Repeat (ISSR) markers. Plant Archives. 19(1): 1646-1652.
  28. Melo, W.A.; Freitas, C.G.; Bacon, C.D.; Collevatti, R.G. (2018). The road to evolutionary success: Insights from the demographic history of an Amazonian palm. Heredity. 121(2): 183–195. https://doi.org/10.1038/s41437-018-0074-1
  29. Mesa-Castellanos, L.; Toro, B.A.; Isaza, A.C. (2017). Manejo de Mauritia flexuosa L.f. para la producción de artesanías en la altillanura colombiana. Colombia Forestal. 20(1): 85-101. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a07
  30. Milanez, J.T.; Neves, L.C.; Silva, P.M.; Bastos, V.J.; Shahab, M.; Colombo, R.C.; Roberto, S.R. (2016). Pre–harvest studies of buriti (Mauritia flexuosa L. f.), a Brazilian native fruit, for the characterization of ideal harvest point and ripening stages. Scientia Horticulturae. 202: 77-82. https://doi.org/10.1016/j.scienta.2016.02.026
  31. Miller, M.P. (1997). Tools for population genetic analysis (TFPGA), 1.3: A windows program for the analysis of allozyme and molecular population genetic data. https://www.scienceopen.com/document?vid=91146e4d-17b1-42e6-b5e0-7717b8d6600d
  32. Mir, M.A.; Mansoor, S.; Sugapriya, M.; Alyemeni, M.N.; Wijaya, L.; Ah-mad, P. (2021). Deciphering genetic diversity analysis of saffron (Crocus sativus L.) using RAPD and ISSR markers. Saudi Journal of Biological Sciences. 28(2): 1308-1317. https://doi.org/10.1016/j.sjbs.2020.11.063
  33. Montúfar, R.; Recalde, A.; Couvreur, T.L.P. (2020). High genetic diversity with low connectivity among Mauritia flexuosa (Arecaceae) stands from Ecuadorean Amazonia. Biotropica. 53(1): 152-161. https://doi.org/10.1111/btp.12855
  34. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America. 70(12): 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321
  35. Nei, M.; Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America. 76(10): 5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  36. Peakall, R.; Smouse, P. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 28(19): 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  37. Pinheiro, L.G.; Chagas, K.P.; Freire, A.S.M.; Ferreira, M.C.; Fajardo, C.G.; Vieira, F.A. (2017). Anthropization as a determinant factor in the genetic structure of Copernicia prunifera (Arecaceae). Genetics and Molecular Research. 16(3). https://doi.org/10.4238/gmr16039768
  38. Quiroga, Y.; Gómez, M.S.; Lares, M. (2017). Componentes Bioactivos del Asai (Euterpe oleracea Mart. y Euterpe precatoria Mart.) y su efecto sobre la salud. Archivos Venezolanos de Farmacología y Terapéutica. 36(3): 58-66.
  39. Ramos, S.L.; Dequigiovanni, G.; Sebbenn, A.M.; Lopes, M.T.; de Macêdo, J.L.; Veasey, E.A.; Alves-Pereira, A.; da Silva, P.P.; Garcia, J.N.; Kageyama, P.Y. (2018). Paternity analysis, pollen flow, and spatial genetic structure of a natural population of Euterpe precatoria in the Brazilian Amazon. Ecology and Evolution. 8(22): 11143-11157. https://doi.org/10.1002/ece3.4582
  40. Ramos, S.L.F.; Dequigiovanni, G.; Lopes, M.T.G.; Aguiar, A.V.; Lopes, R.; Veasey, E.A.; Macêdo, A.L.V.; Alves-Pereira, A.; Fraxe, T.J.P.; Wrege, M.S.; Garcia, J.N. (2021). Genetic structure in populations of Euterpe precatoria Mart. In the Brazilian Amazon. Frontiers in Ecology and Evolution. 8:603448. https://doi.org/10.3389/fevo.2020.603448
  41. Rocha, E.; Viana, V.M. (2004). Manejo de Euterpe precatoria Mart. (Açaí) no seringal Caquetá, Acre, Brasil. Scentia Forestalis. 65: 59-69.
  42. Rossi, F.S.; Rossi, A.; Dardengo, J.D.; Brauwers, L.R.; da Silva, M.L.; Sebbenn, A.M. (2014). Diversidade genética em populações naturais de Mauritia flexuosa L.f. (Arecaceae) com uso de marcadores ISSR. Scientia Forestalis. 42(104): 631-639.
  43. Sabir, J.S.; Abo-Aba, S.; Bafeel, S.; Zari, T.A.; Edris, S.; Shokry, A.; El-Domyati, F.M. (2014). Characterization of ten date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia using AFLP and ISSR markers. Comptes Rendus Biologies. 337(1): 6-18. https://doi.org/10.1016/j.crvi.2013.11.003
  44. Sander, N.L.; Pérez-Zavala, F.; Da Silva, C.J.; Arruda, J.C.; Pulido, M.T.; Barelli, M.; Rossi, A.B.; Viana, A.P.; Boechat, M.S.B.; Bacon, C.D.; Cibrián-Jaramillo, A. (2018). Rivers shape population genetic structure in Mauritia flexuosa (Arecaceae). Ecology and Evolution. 8(13): 6589-6598. https://doi.org/10.1002/ece3.4142
  45. Santos-Cochev-da-Cruz, J.; de-Freitas-Encinas-Dardengo, J.; Souza-Rodrigues, A.; Vicente-Tiago, A.; Moreno-de-Pedri, E.; Müller-Zortéa, K.; Gonçalves-Garcia, M.; Alves-da-Silva-Neves, S.; Bandini-Rossi, A. (2022). Diversity and genetic structure of natural populations of the palm tree Euterpe precatoria (Arecaceae). Revista de Biología Tropical. 70(1): 213-221. https://doi.org/10.15517/rev.biol.trop.v70i1.42942
  46. Speranza, P.; Falcão, A.O.; Macedo, J.A.; Silva, L.H.; Rodrigues, A.M.; Macedo, G.A. (2016). Amazonian Buriti oil: chemical characterization and antioxidant potential. Grasas Aceites. 67(2): 1-9. https://doi.org/10.3989/gya.0622152
  47. Sugai, K.; Watanabe, S.; Kuishi, T.; Imura, S.; Ishigaki, K.; Yokota, M.; Suyama, Y. (2016). Extremely low genetic diversity of the northern limit populations of Nypa fruticans (Arecaceae) on Iriomote Island, Japan. Conservation genetics. 17(1): 221-228. https://doi.org/10.1007/s10592-015-0773-6
  48. Trujillo-González, J.M.; Torres, M.A.; Santana-Castañeda, E. (2011). La palma de Moriche (Mauritia flexuosa L.f) un ecosistema estratégico. Orinoquia. 15(1): 62-70. https://doi.org/10.22579/20112629.43
  49. Valois-Cuesta, H.; Martínez-Ruiz, C.; Rentería Cuesta, Y.Y.; Panesso Hinestroza, S.M. (2013). Diversidad, patrones de uso y conservación de palmas Arecaceae en bosques pluviales del Chocó, Colombia. Revista de Biología Tropical. 61(4): 1869-1889. https://doi.org/10.15517/rbt.v61i4.12858
  50. Virapongse, A. (2017a). Social mechanisms and mobility: Buriti Palm (Mauritia flexuosa) extractivism in Brazil. Human Ecology. 45(1): 119-129. https://doi.org/10.1007/s10745-016-9887-9
  51. Virapongse, A.; Endress, B.A.; Gilmore, M.P.; Horn, C.; Romulo, C. (2017b). Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Global Ecology and Conservation. 10: 70-92. https://doi.org/10.1016/j.gecco.2016.12.005
  52. Wright, S. (1978). Evolution and the genetics of populations, variability within and among natural populations. 4 ed. Chicago: University of Chicago Press.
  53. Yamaguchi, K.K.; Pereira, L.F.; Lamarão, C.V.; Lima, E.S.; da Veiga-Junior, V.F. (2015). Amazon acai: chemistry and biological activities: a review. Food Chemistry. 179: 137–151. https://doi.org/10.1016/j.foodchem.2015.01.055
  54. Yancheva, S.; Mavromatis, P. (2021). Phylogenetic analysis of selected olive genotypes by ISSR markers. Journal of Central European Agriculture. 22(1): 127-132. https://doi.org/10.5513/JCEA01/22.1.2960
  55. Yusuf, A.O.; Culham, A.; Aljuhani, W.; Ataga, C.D.; Hamza, A.M.; Odewale, J.O.; Enaberue, L.O. (2015). Genetic diversity of Nigerian date palm (Phoenix dactylifera) germplasm based on microsatellite markers. International Journal of Bio-Science and Bio-Technology. 7(1): 121-132. https://doi.org/10.14257/ijbsbt.2015.7.1.12

Downloads

Download data is not yet available.