Growth-promoting rhizobacteria improve physiological variables in lemon balm, Melissa officinalis L., subjected to water stress
DOI:
https://doi.org/10.22267/rcia.20244102.232Keywords:
Bacillus, bacterial strains, climate change, PGPR, plant hormones, yieldAbstract
Climate change has caused droughts in regions that previously did not have water issues, affecting the production of medicinal plants grown in small-scale agricultural units. Plants such as lemon balm, Melissa officinalis L., are sensitive to water stress, which reduces their yield. One alternative to mitigate water stress is the use of plant growth-promoting rhizobacteria (PGPR). However, in the high tropics of Colombia, the use of these microorganisms is not common due to a lack of knowledge about how they can improve water absorption and increase the yield of medicinal plants. This study aimed to determine the effect of native PGPR on lemon balm plants subjected to water stress conditions using a completely randomized design with six treatments and four replications. Applications of Bacillus cereus and Bacillus amyloliquefaciens were made, and the plants were subjected to two water levels (field capacity and 50% field capacity). Physiological variables of stomatal conductance, chlorophyll content, and fluorescence were measured at the end of the experiment. Bacillus cereus significantly improved growth parameters such as number of leaves (115.00±34.71), fresh weight of root (5.51±3.07 g) and shoot (8.32±4.27), Bacillus amyloliquefaciens increased stomatal conductance (401.3 μmol H2O m2 s1) in water-stressed plants. These results suggest that the use of native PGPR considerably improves the growth and development parameters of lemon balm plants and provides a viable alternative for farmers to enhance yield and resistance to water stress conditions.
Downloads
Metrics
References
Abbaszadeh, B.; Layeghhaghigh, M.; Azimi, R.; Hadi, M. (2020). Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Industrial Crops and Products. 144: 111893. https://doi.org/10.1016/j.indcrop.2019.111893
Ahmadi, T.; Shabani, L.; Sabzalian, M.R. (2019). Improvement in drought tolerance of lemon balm, Melissa officinalis L. under the pretreatment of LED lighting. Plant Physiology and Biochemistry. 139: 548-557. https://doi.org/10.1016/j.plaphy.2019.04.021
Bangar, P; Chaudhury, A; Tiwari, B; Kumar, S; Kumari, R. (2019). Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turkish journal of biology, 43(1), 58–69. https://doi.org/10.3906/biy-1801-64
Baker, N.R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology. 59(1): 89-113. 10.1146/annurev.arplant.59.032607.092759
Bardgett, R.D.; Mommer, L.; De Vries, F.T. (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution. 29(12): 692–699. https://doi.org/10.1016/j.tree.2014.10.006
Bhargavi, B.; Kalpana, K.; Reddy, K. (2017). Influence of Water Stress on Morphological and Physiological Changes in Andrographis paniculata. International Journal of Pure and Applied Bioscience. 5(6): 1550-1556. http://dx.doi.org/10.18782/2320-7051.5932
Blankenship, R.E. (2015). Photosynthesis: The Ligth Reactions. In: Taiz, L.; E. Zeiger.; I.A, Moller.; A. Murphy. Plant Physiology and Development. pp. 171-202. 6 edition. Massachusetts: U.S.A.: Sinauer Associates Inc. 761p.
Bresson, J.; Bieker, S.; Riester, L.; Doll, J.; Zentgraf, U. (2018). A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. Journal of Experimental Botany. 69 (4): 769-786. https://doi.org/10.1093/jxb/erx246
Carvalho, F.; Coimbra, A.T.; Silva, L.; Duarte. A.P.; Ferreira, S. (2023). Melissa officinalis essential oil as an antimicrobial agent against Listeria monocytogenes in watermelon juice. Food Microbiology. 109: 104105. https://doi.org/10.1016/j.fm.2022.104105.
Eshaghi-Gorgi, O.; Fallah, H.; Niknejad, Y. (2022). Effect of Plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis L. under drought stress. Biologia. 77: 11–20. https://doi.org/10.1007/s11756-021-00919-2
Etesami, H.; Maheshwari, D.K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety. 156: 225–246. https://doi:10.1016/j.ecoenv.2018.03.013.
Flexas, J.; Gallé, A.; Galmés, J.; Ribas-Carbo, M.; Medrano, H. (2012). The Response of Photosynthesis to Soil Water Stress. In: Aroca, R (eds) Plant Responses to Drought Stress. pp. 129-144. First edition. Berlin, Heidelberg. 466 p. https://doi.org/10.1007/978-3-642-32653-0_5.
Ganjeali, A.; Ashiani, E.; Zare, M.; Tabasi, E. (2018). Influences of the arbuscular mycorrhizal fungus Glomus mosseae on morphophysiological traits and biochemical compounds of common bean (Phaseolus vulgaris) under drought stress. South African Journal of Plant and Soil. 35(2): 121–127. https://doi.org/10.1080/02571862.2017.1340982
Glick, B.R.; Cheng, Z.; Czarny, J.; Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology. 119: 329–339. https://doi.org/10.1007/s10658-007-9162-4
Ghorbani, A.; Zarinkamar, F.; Fallah, A. (2011). Effect of cold stress on the anatomy and morphology of the tolerant and sensitive cultivars of rice during germination. Cell and Tissue Journal. 2(3): 235-244. https://doi.org/10.52547/JCT.2.3.235
Holbrook, N.M. (2015). Water Balance of Plants. In: Taiz, L.; Zeiger, E. Plant Physiology and Development. pp. 99-116. 6th ed. Sunderland Massachusetts U.S.A.: Sinauer Associates Inc. 761p.
Jahanban-Esfahlan, R.; Seide, K.; Monfaredan, A.; Shafie-Irannejad, V.; Mesgar, A.M.; Karimian, A.; Yousefi, B. (2017). The herbal medicine Melissa officinalis extract effects on gene expression of p53, Bcl-2, Her2, VEGF-A and hTERT in human lung, breast and prostate cancer cell lines. Gene. 613: 14-19. https://doi.org/10.1016/j.gene.2017.02.034.
Jeyakumar, P.; Kavino, M.; Kumar, N.; K, Soorianathasundaran. (2005). Physiological performance of papaya cultivars under abiotic stress conditions. Acta Horticulturae. 740: 209-216. 10.17660/ActaHortic.2007.740.25
Jiménez-Suancha, S.C.; Alvarado, O.H.; Balaguera-López, H.E. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas. 9(1): 149-160. Doi: 10.17584/rcch.2015v9i1.3753.
Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. (2020). The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Applied Sciences. 10(16): 5692. https://doi.org/10.3390/app10165692
Kaushal, M.; Wani, S.P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology. 66: 35–42. https://doi.org/10.1007/s13213-015-1112-3
Karadeniz, A.; Topcuoğlu, Ş. F.; İnan, S. (2006). Auxin, Gibberellin, Cytokinin and Abscisic Acid Production in Some Bacteria. World Journal of Microbiology and Biotechnology. 22(10): 1061–1064. https://doi:10.1007/s11274-005-4561-1.
Kim, S.T.; Sung-Je Y.; Hang-Yeon, W.; Jaekyeong, S.; Mee, S.K.; Kyung. (2022). Bacillus butanolivorans KJ40 contributes alleviation of drought stress in pepper plants by modulating antioxidant and polyphenolic compounds. Scientia Horticulturae. 301: 111111. https://doi.org/10.1016/j.scienta.2022.111111.
Kumar, I; Sharma. R.K. (2018). Production of secondary metabolites in plants under abiotic stress: an overview. Significances of Bioengineering & Biosciences. 2(4): 96-200. 10.31031/SBB.2018.02.000545
Leuschner, C.; Wedde, P.; Lübbe, T. (2019). The relation between pressure–volume curve traits and stomatal regulation of water potential in five temperate broadleaf tree species. Annals of Forest Science. 76: 60. https://doi.org/10.1007/s13595-019-0838-7
Mathur, S.; Agnihotri, R.; Sharma, M.P.; Reddy, V.R.; Jajoo, A. (2021). Effect of High-Temperature Stress on Plant Physiological Traits and Mycorrhizal Symbiosis in Maize Plants. Journal of Fungi. 7(10): 867. https://doi.org/10.3390/jof7100867
Mutumbam, F.A.; Zagal, E.; Gerding, M.; Castillo-Rosales, D.; Paulino, L.; Schoebitz, M. (2018). Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes. Journal of Soil Science and Plant Nutrition. 18(4): 1080–1096. http://dx.doi.org/10.4067/S0718-95162018005003003
Mohasseli, V.; Farbood, F.; Abolfath, M. (2020). Antioxidant defense and metabolic responses of lemon balm (Melissa officinalis L.) to Fe-nano-particles under reduced irrigation regimes. Industrial Crops and Products. 149: 112338, https://doi.org/10.1016/j.indcrop.2020.112338.
Moradkhani, H.; Sargsyan, E.; Bibak, H.; Naseri, B.; Sadat-Hosseini, M.; Fayazi-Barjin, A.; Meftahizade, H. (2010). Melissa officinalis L., a valuable medicine plant: A review. Journal of Medicinal Plants Research. 4(25): 2753-2759. https://doi.org/10.5897/JMPR.9000881
Nezhadahmadi, A.; Prodhan, Z.H.; Faruq, G. (2013). Drought tolerance in wheat. The Scientific World Journal. 610721: 1-12. https://doi.org/10.1155/2013/610721
Pellegrini, E.; Carucci, M.G.; Campanella, A.; Lorenzini, G.; Nali, C. (2011). Ozone stress in Melissa officinalis plants assessed by photosynthetic function. Environmental and Experimental Botany. 73: 94-101. 10.1016/j.envexpbot.2010.10.006
Polle, A.; Chen, S.L.; Eckert, C.; Harfouche, A. (2019). Engineering drought resistance in forest trees. Frontiers in Plant Science. 9: 1875. https://doi.org/10.3389/fpls.2018.01875
Rodriguez, G.; Schaffer, B.; Basso, C.; Vargas. A. (2014). Efecto del tiempo de inundación del sistema radical sobre algunos aspectos fisiológicos y desarrollo del cultivo de lechosa (Carica papaya L). Revista de la Facultad de Agronomía. 40(3): 89-98.
Saheri, F.; Barzin, G.; Pishkar, L.; Boojar, M.M.A.; Babaeekhou, L. (2020). Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia. 75: 2201. https://doi.org/10.2478/s11756-020-00571-2
Salazar-Garcia, G.; Balaguera-Lopez, H.E.; Hernandez, J.P. (2022). Effect of Plant Growth-Promoting Bacteria Azospirillum brasilense on the Physiology of Radish (Raphanus sativus L.) under Waterlogging Stress. Agronomy. 12(3): 726. https://doi.org/10.3390/agronomy12030726
Singh, S.K.; Reddy, V.R.; Fleisher. D.H; Timlin, D.J. (2018). Phosphorus Nutrition Affects Temperature Response of Soybean Growth and Canopy Photosynthesis. Frontiers in Plant Science. 9: 1116. https://doi.org/10.3389/fpls.2018.01116.
Sharma, D.; Shree, B.; Kumar, S.; Kumar, V.; Sharma, S.; Sharma, S. (2022). Stress induced production of plant secondary metabolites in vegetables: Functional approach for designing next generation super fosas. Plant Physiology and Biochemistry. 192: 252-272. https://doi.org/10.1016/j.plaphy.2022.09.034.
Tardieu, F.; Draye, X.; Javaux, M. (2017). Root water uptake and ideotypes of the root system: whole-plant controls matter. Vadose Zone Journal. 16(9): 1-10 https://doi.org/10.2136/vzj2017.05.0107
Vélez, R.; D’Armas, H.; Jaramillo-Jaramillo, C.; Vélez, E. (2018). Metabolitos secundarios, actividad antimicrobiana y letalidad de las hojas de Cymbopogon citratus (hierba luisa) y Melissa officinalis (toronjil). 2(2): 31-39. https://doi.org/10.29076/issn.2602-8360vol2iss2.2018pp31-39p
Xie, Y.; Wu, L.; B. Zhu, L.; Wu, H.; Gu, Q.; Rajer, F.U.; Gao, X. (2017). Digital gene expression profiling of the pathogen-resistance mechanism of Oryza sativa 9311 in response to Bacillus amyloliquefaciens FZB42 induction. Biological Control. 110: 89-97. https://doi.org/10.1016/j.biocontrol.2017.04.009
Xu, J.; Su, X.; Li, Y.; Sun, X.; Wang, D.; Wang. W. (2019). Response of bioactive phytochemicals in vegetables and fruits to environmental factors. European Journal of Nutrition & Food Safety. 9(3): 233-247. 10.9734/ejnfs/2019/v9i330062
Yang, J.; Kloepper, J.W.; Ryu. C. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Science. 14(1): 1–4 10.1016/j.tplants.2008.10.004
Zakerian, F.; Sefidkon, F.; Abbaszadeh, B.; Kalate, J.S. (2020). Effects of water stress and mycorrhizal fungi on essential oil content and composition of Satureja sahendica Bornm. Journal of Agriculture, Science and Technology. 22(3): 789–799.
Zahir, Z.A., Munir, A.; Asghar, H.N., Shaharoona, B.; Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology. 18: 958–963.
Zare, M.; Azizi, M.H.; Bazrafshan, F. (2011). Effect of drought stress on some agronomic traits in ten barley (Hordeum vulgare L.) cultivars. Engineerings, Technology & Applied Science Research. 1: 57–62.
Zhang, W.; Xie, Z.; Zhang, X.; Lang, D.; Zhang, X. (2019). Growth-promoting bacteria alleviates drought stress of G. uralensis through improving photosynthesis characteristics and water status. Journal of Plant Interactions. 14(1): 580–589. https://doi.org/10.1080/17429145.2019.1680752
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.