Development of Jatropha curcas grown under limited amounts of daily water supply
DOI:
https://doi.org/10.22267/rcia.20234003.220Keywords:
Biofuel plant, Evapotranspiration, Growth, Matric potential, RainfallAbstract
Jatropha curcas plant is known for its soil tolerance and ability to thrive in low humidity conditions; however, there is a lack of systematic reports documenting the impact of limited water availability on its growth and development. This work aimed to analyze the development of J. curcas cultivated with daily supplementation of limited amounts of water. Five daily irrigation treatments were established to simulate varying annual rainfall levels: 250, 750, 1250, 1750 mm and 2250 mm. In each treatment, we used 16 seedlings of J. curcas MAP-08. The seedlings were sown in pots containing loam soil substrate mixed with vermicompost (19: 1 weight to weight). After 60 weeks of cultivation, plants receiving irrigation of 2250 mm per year exhibited growth rates 1.28, 1.51, 1.95 and 1.95 times higher, with respective increases in stem diameter of 15.6, 22.2, 41.9% and 47.7%, as well as 1.2, 1.4, 1.8, and 1.8 more leaves compared to those receiving 1750, 1250, 750, and 250 mm. There was no statistical difference in the number of branches (3.86 branches per plant) between the plants of the treatment with irrigation of 2250, 1750 mm and 1250 mm per year or between the plants belonging to the 750 and 250 mm per year (2.90 branches per plant) treatments. The plants of treatments 1750 and 2250 were the only ones that produced flowers. Although J. curcas typically functions as a succulent deciduous bush, with its stem serving to regulate leaf water potential and acting as a shock absorber against soil water potentials, its morphological and reproductive characteristics were recorded to be negatively affected when subjected to reductions of 22, 44, 67% and 89% in water availability compared to the maximum annual level recorded in the work area (2250 mm).
Downloads
Metrics
References
Adriano-Anaya, M. de L.; Pérez-Castillo, E.; Salvador-Figueroa, M.; Ruiz-González, S.; Vázquez-Ovando, A.; Grajales-Conesa, J.; Ovando-Medina, I. (2016). Sex expression and floral diversity in Jatropha curcas: A population study in its center of origin. PeerJ, 2016(24). https://doi.org/10.7717/PEERJ.2071
Abou, A.A.; Atta, N.M.M. (2009). Response of Jatropha curcas L. to water deficits: Yield, water use efficiency and oil seed characteristics. Biomass and Bioenergy. 33(10): 1343–1350. 10.1016/j.biombioe.2008.05.015
Achten, W.M.J.; Maes, W.H.; Reubens, B.; Mathijs, E.; Singh, V.P.; Verchot, L.; Muys, B. (2010). Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass and Bioenergy. 34(5): 667–676. 10.1016/j.biombioe.2010.01.010
Arcoverde, G.B.; Rodrigues, B.M.; Pompelli, M.F.; Santos, M.G. (2011). Water relations and some aspects of leaf metabolism of Jatropha curcas young plants under two water deficit levels and recovery. Brazilian Journal of Plant Physiology. 23(2): 123–130. 10.1590/S1677-04202011000200004
Arya, G.M.; Indradewa, D.; Yudono, P.; Kertonegoro, B.D.; Kusmarwiyah, R. (2012). Physiological responses of Jatropha to drought stress in coastal sandy land conditions. Makara Journal of Science. 16(2): 115-121.
Chapotin, S.M.; Razanameharizaka, J.H.; Holbrook, N.M. (2006a). Water relations of Baobab trees (Adansonia spp. L.) during the rainy season: does stem water buffer daily water deficits? Plant Cell and Environment. 29: 1021-1032. 10.1111/j.1365-3040.2005.01456.x
Chapotin, S.M.; Razanameharizaka, J.H.; Holbrook, N.M. (2006b). Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season. New Phytologist. 169: 549-559. 10.1111/j.1469-8137.2005.01618.x
Craine, J.M.; Engelbrecht, B.M.; Lusk, C.H.; McDowell, N.G.; Poorter, H. (2012). Resource limitation, tolerance, and the future of ecological plant classification. Frontiers in Plant Science. 3: 1-10. 10.3389/fpls.2012.00246
Chaves, M.M.; Oliveira M.M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany. 55(407): 2365–2584. 10.1093/jxb/erh269
De Santana, T.A.; Oliveira, P.S.; Silva, L.D.; Laviola, B.G.; de Almeida, A.; Gomes, F.P. (2015). Water use efficiency and consumption in different Brazilian genotypes of Jatropha curcas L. subjected to soil water deficit. Biomass and Bioenergy. 75: 119-125. 10.1016/j.biombioe.2015.02.008
Diaz-Abril, M.D.; Vélez-Sánchez, J.E.; Rodriguez-Hernández, P. (2016). Effect of the controlled irrigation in the yield and fruit quality of Pyrus communis L., cv. Triunfo de Viena. Acta Agronómica. 65(2): 156-163. 10.15446/acag.v65n2.49650
Escalante-Sandoval, C.; Amores-Rovelo, L. (2014). Trend analysis of hydroclimatic variables of the Coast of Chiapas. Revista Mexicana de Ciencias Agrícolas. 5(1): 61-75.
Fardim, L.; Colodetti, T.V.; Teixeira, J.F.; Nunes, W.; Deleon, L.; Batista, S.V.; Fialho, E.; Galvêas, B.; Antonio, M. (2015). Performance of genotypes of physic nut conditioned by water availability. American-Eurasian Journal Agriculture & Environment Science. 15(8): 1486-1493. 10.5829/idosi.aejaes.2015.15.8.12737
Fernández, M.D.; Romero, I.; Hueso, J.J.; Cuevas, J. (2005). Modificación de la fecha de floración en níspero mediante la aplicación de riego deficitario controlado. https://acortar.link/6rkjyF
Ferreira, E.; Zanchim, B.C.; Grella, A.; Garrone, R.F.; Lavres, J. (2013). Photosynthesis rate, chlorophyll content and initial development of physic nut without micronutrient fertilization. Revista Brasilera de Ciéncia do Solo. 37(5): 1334-1342. 10.1590/S0100-06832013000500022
Gangwar, M.; Shankar, J. (2020). Molecular mechanisms of the floral biology of Jatropha curcas: Opportunities and challenges as an energy crop. Frontiers in Plant Science.11: 609. https://doi.org/10.3389/fpls.2020.00609
Guerrero, J.A.; Campuzano, L.F.; Rojas, S.; Pachón-García, J. (2011). Morphological and agronomic characterisation of the Jatropha curcas L. Colombian germplasm. Orinoquia. 15(2): 131-147.
Hargreaves, G.H.; Samani, Z.A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture. 1(2): 96-99. 10.13031/2013.26773
Jayasundara, N.C.Y.; Galagedara, L.W.; Pushpakumara, D.K.N.G.; Weerahewa, J. (2014). Effect of soil moisture content on Jatropha curcas L. during early growth stage. https://acortar.link/tUgi8W
Kifle, M.; Gebretsadikan, T. G. (2016). Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia. Agricultural Water Management. 170: 133-139. 10.1016/j.agwat.2016.01.003
Kumar, S.; Sreeharsha, R. V.; Mudalkar, S.; Sarashetti, P. M.; Reddy, A. R. (2017). Molecular insights into photosynthesis and carbohydrate metabolism in Jatropha curcas grown under elevated CO2 using transcriptome sequencing and assembly. Scientific Reports. 7: 11066 https://doi.org/10.1038/s41598-017-11312-y
Li, Q.; Dong, B.; Qiao, Y.; Liu, M.; Zhang, J. (2010). Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agricultural Water Management. 97(10): 1676-1682. 10.1016/j.agwat.2010.05.025
Lukowska, M.; Józefaciuk, G. (2016). Osmotic stress induces severe decrease in cation exchange capacity and surface groups of medium acidity in roots of cereal plants. Acta Physiologiae Plantarum. 38: 31. https://doi.org/10.1007/s11738-015-2050-1
Machado, R.; Suárez, J. (2009). Performance of three provenances of Jatropha curcas in the germplasm bank of the EEPF “Indio Huatey”. Pastos y Forrajes. 32(1): 29-37.
Maes, W.H.; Achten, W.M.J.; Reubens, B.; Raes, D.; Samson, R.; Muys, B. (2009). Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. Journal of Arid Environments. 73(10): 877-884. 10.1016/j.jaridenv.2009.04.013
Martínez-Barba, M.C. (2015). Estudio comparativo de las relaciones hídricas y producción en uva de mesa bajo riego deficitario (RD) y desecación parcial de raíces (DPR). Efecto del déficit continuo y controlado. España: Universidad Politecnica de Cartagena.
Matsumoto, H.; Yeasmin, R.; Kalemelawa, F.; Aranami, M.; Inoue, M.; Nishihara, E. (2014). Effect of soil water environment and simulated savanna climate on growth and mineral nutrition in Jatropha curcas L. Agricultural Science. 2(3): 13-22. 10.12735/as.v2i3p13
Mielke, M.S.; Schaffer, B.; Li, C. (2010). Use of a SPAD meter to estimate chlorophyll content in Eugenia uniflora L. leaves as affected by contrasting light environments and soil flooding. Photosynthetica. 48(3): 332-338. 10.1007/s11099-010-0043-2
Noda-Leyva, Y.; Pérez-Vásquez, A.; Valdés-Rodríguez, O.A. (2015). Establishment of three species of oleaginous under association. Agronomía Mesoamericana. 26(2): 323-332. 10.15517/am.v26i2.19326
Ojeda-Silvera, C.M.; Murillo-Amador, B.; Reynaldo-Escobar, I.M.; Troyo-Diéguez, E.; Ruiz-Espinoza, F.H.; Nieto-Garibay, A. (2013). Water stress on germination and seedling growth of genotypes of sweet basil Ocimum basilicum L. Revista Mexicana de Ciencias Agrícolas. 4(2): 229-241.
Putranto, D.H.; Tongkra, T.; Chutteang, C.; Sridokchan, W. (2014). Growth and physiological response of Jatropha interspecific hybrid (Jatropha curcas x J. integerrima) under salt stress. International Journal on Advanced Science Engineering. 4(2): 18-23. 10.18517/ijaseit.4.2.367
Quintal-Ortiz, W.C.; Pérez-Gutiérrez, A.; Latournerie-Moreno, L.; May-Lara, C.; Ruiz-Sánchez, E.; Martínez-Chacón, A.J. (2012). Water use, water potential and yield of habanero pepper (Capsicum chinense Jacq.). Revista Fitotecnia Mexicana. 35(2): 155-160.
Santillán-Fernández, A.; Santoyo-Cortés, V.H.; García-Chávez, L.R.; Covarrubias- Gutiérrez, I.; Merino, A. (2016). Influence of drought and irrigation on sugarcane yields in different agroecoregions in Mexico. Agricultural Systems. 143: 126-135. 10.1016/j.agsy.2015.12.013
Santos, A.N.; e Silva, Ê.F.D.F.; da Silva, G.F.; Barnabé, J.M.; Rolim, M.M.; Dantas, D.D.C. (2016). Yield of cherry tomatoes as a function of water salinity and irrigation frequency. Revista Brasileira de Engenharia Agrícola e Ambiental. 20(2): 107-112. 10.1590/1807-1929/agriambi.v20n2p107-112.
Serrano, V.; Díaz, G.; López, A.; Cano, M.A.; Báez, A.D.; Garrido, E. (2006). Estadísticas climatológicas básicas del estado de Chiapas. Instituto Nacional de Investigaciones Agrícolas y Pecuarias. México: Centro de Investigación Regional Pacífico Sur. Campo Experimental Centro de Chiapas.
Silva, E.N.; Ribeiro, S.L.; Ferreira-Silva, S.L.; Viégas, R.A.; Silveira, J.A.G. (2010). Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. Journal of Arid Environments. 74(10): 1130-1137. 10.1016/j.jaridenv.2010.05.036
Yin, C.Y.; Pang, X.Y.; Peuke, A.D.; Wang, X.; Chen, K.; Gong, R.G. (2016). Growth and photosynthetic responses in Jatropha curcas L. seedlings of different provenances to watering regimes. Photosynthetica. 54(3): 367-373. 10.1007/s11099-016-0201-2
Yang, Q.; Zhang, J.; Liu, X.; Yuan, L.; Liu, Y.; Yang, J. (2014). Effects of irrigation amount on morphological characteristics and water use of Jatropha curcas. Chinese Journal of Applied Ecology. 25(5): 1335-1339.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.