contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 41 No. 3 (2024): Revista de Ciencias Agrícolas - Tercer cuatrimestre, Septiembre - Diciembre 2024

The effect of Bacillus spp. and vermicompost on the growth of cherry tomato, Solanum lycopersicum L., fruits

DOI
https://doi.org/10.22267/rcia.20244103.244
Submitted
September 16, 2023
Published
2024-12-30

Abstract

In this investigation, we evaluate the effect of Bacillus spp. and vermicompost on the growth of cherry tomato, Solanum lycopersicum L., fruits. We used four treatments: 1. Vermicompost (112 g). 2. Vermicompost (112 g) in combination with the consortium of bacteria of the genus Bacillus (B. subtilis, B. thuringiensis var. kurstaki, B. pumilus, and B. amyloliquefaciens) at a concentration of 1x108 colony forming units (CFU)/mL and in a dosasge of 3 mL/L of water. 3. The consortium of bacteria of the genus Bacillus at the concentration and dose mentioned and, 4. Control (untreated soil). Our experimental design was in the completely randomized design with three replications. We used the tomato fruit's weight, horizontal diameter, and vertical diameter as variable responses. Significant differences between treatments were assessed with one-way analysis of variance (ANOVA) and classified with Tukey's honestly significant difference (HSD) test. The assumptions of normality, homogeneity of variations, and data independence were verified. The Wilcoxon test was used to assess differences in the chemical composition of the fruits of each treatment. The results showed that the highest values of average fruit weight, 15.21 g and 12.99 g, were statistically equivalent obtained with T2 and T3; correspondingly compared to 11.86 g obtained in the control. There were no statistical differences between treatments in the vertical and horizontal diameter. It is concluded that the application of vermicompost in combination with the Bacillus consortium (T2); or individually (T3), significantly increases fruit weight and improves the nutritional value (N, P, K, Ca, S, Mg, Fe, Mn, Cu, Zn, B, and Na).

References

  1. Amara, U.; Khalid, R.; Hayat, R. (2015). Soil Bacteria and Phytohormones for Sustainable Crop Production. In: Maheshwari, D. K. (eds). Bacterial Metabolites in Sustainable Agroecosystem. pp. 87-103. Switzerland: Springer. 390p. https://doi.org/10.1007/978-3-319-24654-3_5
  2. Arias, L. A.; Bojacá, C. R.; Ahumada, D. A.; Schrevens, E. (2014). Monitoring of pesticide residues in tomato marketed in Bogotá, Colombia. Food Control. 35(1): 213–217. https://doi.org/10.1016/j.foodcont.2013.06.046
  3. Arias, L. A.; Garzón, A.; Ayarza, A.; Aux, S.; Bojacá, C. R. (2021). Environmental fate of pesticides in open field and greenhouse tomato production regions from Colombia. Environmental Advances. 3: 100031. https://doi.org/10.1016/j.envadv.2021.100031
  4. Bakhtiarizade, M.; Souri, M.K. (2019). Beneficial effects of rosemary, thyme and tarragon essential oils on postharvest decay of Valencia oranges. Chemical and Biological Technologies in Agriculture. 6(9): 1-8. https://doi.org/10.1186/s40538-019-0146-3
  5. Bolaños, L.; Lukaszewski, K.; Bonilla, I.; Blevins, D. (2004). Why boron?. Plant Physiology and Biochemistry. 42(11): 907–912. https://doi.org/10.1016/j.plaphy.2004.11.002
  6. Bouček, J.; Kulhánek, M.; Košnář, Z.; Podhorecká, K.; Obergruber, M.; Hönig, V.; Száková J.; Beesley L.; Berchová B. K.; Omara-Ojunju C.; Hlasvsa T.; Trakal, L. (2023). Is Bacillus amyloliquefaciens inoculation effective for the enhancement of soil and plant nutrient status and fruit quality of Solanum lycopersicum L. in the presence of composted organic fertilisers? Archives of Agronomy and Soil Science. 69(2): 182–196. https://doi.org/10.1080/03650340.2021.1970747
  7. Castro, K.; Restrepo, M. L.; Taborda, G.; Quintero, G. A. (2009). Intensidad de los sabores básicos del tomate (Lycopersicon esculentum) en seis estados de madurez. Biotecnología en el Sector Agropecuario y Agroindustrial. 7(1): 23–28.
  8. Chowdappa, P.; Mohan Kumar, S. P.; Jyothi, Lakshmi, M.; Upreti, K. K. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control. 65(1): 109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009
  9. Corrales Ramírez, L. C.; Caycedo Lozano, L.; Gómez Méndez, M. A.; Ramos Rojas, S. J.; Rodríguez Torres, J. N. (2017). Bacillus spp: una alternativa para la promoción vegetal por dos caminos enzimáticos. Revista Nova publicación científica En Ciencias biomédicas. 15(27): 45-65. https://doi.org/10.22490/24629448.1958
  10. Cremlyn, R. (1990). Plaguicidas Modernos y su Acción Bioquímica. México DF: Editorial LIMUSA. 356p.
  11. De Matos, R. M.; da Silva, P. F.; Neto, J. D.; de Lima, A. S.; de Lima, V. L. A.; Saboya, L. M. F. (2021). Organic fertilization as an alternative to the chemical in cherry tomato growing under irrigation depths. Bioscience Journal. 37(2013): 1–12. 10.14393/BJ-V37N0A2021-48270
  12. Del Puerto Rodríguez, A. M.; Suárez Tamayo, S.; Palacio Estrada, D. E. (2014). Efectos de los plaguicidas sobre el ambiente y la salud. Revista Cubana de Higiene y Epidemiologia. 52(3): 372–387.
  13. Ebrahimi, M.; Mousavi, A.; Souri, M.K.; Sahebani, N. (2021a). Can vermicompost and biochar control Meloidogyne javanica on eggplant?. Nematology. 23(9): 1-12. https://doi.org/10.1163/15685411-BJA10094
  14. Ebrahimi, M.; Souri, M.K.; Mousavi, A.; Sahebani, N. (2021b). Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chemical and Biological Technologies in Agriculture. 8(19): 1-14.
  15. https://doi.org/10.1186/s40538-021-00216-9
  16. Etesami, H.; Jeong, B. R.; Glick, B. R. (2023). Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Current Research in Biotechnology. 5: 100128. https://doi.org/10.1016/j.crbiot.2023.100128
  17. FAO-Food and Agriculture Organization of the United Nations. (2021). El estado de la seguridad alimentaria y la nutrición en el mundo 2021. Transformación de los sistemas alimentarios en aras de la seguridad alimentaria, una nutrición mejorada y dietas asequibles y saludables para todos. https://openknowledge.fao.org/items/dca0cb73-ccad-499c-b52c-afab177a31f6
  18. FAOSTAT. (2019). Plaguicidas Uso. https://www.fao.org/faostat/es/#data/RP
  19. FAOSTAT. (2020). Cultivos y productos de ganadería. https://www.fao.org/faostat/es/#data/QCL
  20. FAOSTAT. (2024). Cropsand and livestock products. https://www.fao.org/faostat/es/#data/QCL
  21. García-Alonso, F.J.; García-Valverde, V.; Navarro-González, I.; Martín-Pozuelo, G.; González-Barrio, R.; Periago, M. J. (2020). Tomato. In: Jaiswal, A. K. (ed.), Nutritional Composition and Antioxidant Properties of Fruits and Vegetables. pp. 255–271. California: Academic press. 745p. https://doi.org/10.1016/B978-0-12-812780-3.00015-5
  22. Guo, X. X.; Zhao, D.; Zhuang, M. H.; Wang, C.; Zhang, F. S. (2021). Fertilizer and pesticide reduction in cherry tomato production to achieve multiple environmental benefits in Guangxi, China. Science of the Total Environment. 793: 148527. https://doi.org/10.1016/j.scitotenv.2021.148527
  23. Hollensteiner, J.; Wemheuer, F.; Harting, R.; Kolarzyk, A. M.; Diaz Valerio, S. M.; Poehlein, A.; Brzuszkiewicz E. B.; Nesemann K.; Braus-Stromeyer S.; Braus G. H.; Daniel R.; Liesegang, H. (2017). Bacillus thuringiensis and Bacillus weihenstephanensis inhibit the growth of phytopathogenic Verticillium species. Frontiers in Microbiology. 7: 2171. https://doi.org/10.3389/fmicb.2016.02171
  24. Hussain, A.; Hasnain, S. (2015). Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. African Journal of Microbiology Research. 3(11): 704-712
  25. Iizuka, T.; Maeda, S.; Shimizu, A. (2013). Removal of pesticide residue in cherry tomato by hydrostatic pressure. Journal of Food Engineering. 116(4): 796–800. https://doi.org/10.1016/j.jfoodeng.2013.01.035
  26. Kai, T.; Nishimori, S.; Tamaki, M. (2020). Effect of Organic and Chemical Fertilizer Application on Growth, Yield, and Quality of Small-Sized Tomatoes. Journal of Agricultural Chemistry and Environment. 9(3): 121–133. https://doi.org/10.4236/jacen.2020.93011
  27. Kantar, F.; Uysal, A. (2020). Effect of Bacillus subtilis and Bacillus amyloliquefaciens culture on the growth and yield of off-season potato (Solanum tuberosum L.). Acta Agronomica. 69(1): 26–31. https://doi.org/10.15446/acag.v69n1.73832
  28. Knapp, S.; Peralta, I. E. (2016). The Tomato (Solanum lycopersicum L., Solanaceae) and Its Botanical Relatives. In: Causse, M.; Giovannoni, J.; Bouzayen, M.; Zouine, M. The Tomato Genome. pp. 7–21. Heidelberg: Springer. 259p. https://doi.org/10.1007/978-3-662-53389-5_2
  29. Kour, D., Rana, K. L.; Yadav, A. N.; Yadav, N.; Kumar, M.; Kumar, V.; Vyas P.; Singh D. H.; Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology. 23: 101487. https://doi.org/10.1016/j.bcab.2019.101487
  30. Kumar Bhatt, M.; Labanya, R.; Joshi, H. C. (2019). Influence of Long-term Chemical fertilizers and Organic Manures on Soil Fertility - A Review. Universal Journal of Agricultural Research. 7(5): 177–188. https://doi.org/10.13189/ujar.2019.070502
  31. Lagos-Burbano, T. C.; Criollo-Escobar, H. (2019). Herramientas estadísticas para la investigación en ciencias agrarias. 1st ed. Pasto: Universidad de Nariño. 247p. https://doi.org/10.22267/lib.udn.005
  32. Lawal, B. (2014). Applied Statistical Methods in Agriculture, Health and Life Sciences. 1 ed. Switzerland: Springer Cham. 799p. https://doi.org/10.1007/978-3-319-05555-8
  33. Legarda, L.; Lagos, T.; Vicuña, L. (2001). Diseño de experimentos agropecuários. 1st ed. Pasto: Universidad de Nariño. 128p.
  34. Leyva, R.; Constán-Aguilar, C.; Blasco, B.; Sánchez-Rodríguez, E.; Romero, L.; Soriano, T.; Ruíz, J. M. (2014). Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse. Journal of the Science of Food and Agriculture. 94(1): 63–70. https://doi.org/10.1002/jsfa.6191
  35. Liu, H.; Meng, F.; Miao, H.; Chen, S.; Yin, T.; Hu, S.; Shao Z.; Liu Y.; Gao L.; Zhu C.; Zhang B.;Wang, Q. (2018). Effects of postharvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits. Food Chemistry. 263: 194–200. https://doi.org/10.1016/j.foodchem.2018.04.124
  36. Mącik, M.; Gryta, A.; Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy. 162: 31–87. https://doi.org/10.1016/bs.agron.2020.02.001
  37. Maheshwari, D. K. (2012). Bacteria in agrobiology: Stress management. 1st ed. Germany: Springer Berlin. 336p. https://doi.org/10.1007/978-3-642-23465-1
  38. Mfarrej, M. F. B.; Rara, F. M. (2019). Competitive, Sustainable Natural Pesticides. Acta Ecologica Sinica. 39(2): 145–151. https://doi.org/10.1016/j.chnaes.2018.08.005
  39. Márquez-Hernández, C.; Cano-Rios, P.; Chew-Madinaveitia, Y. I.; Moreno-Reséndez, A.; Rodríguez-Dimas, N. (2006). Sustratos en la producción orgánica de tomate cherry bajo invernadero. Revista Chapingo Serie Horticultura. 12(2):183-188.
  40. Murray-Núñez, R. A.; Bojórquez-Serrano, J.I.; Hernández-Jiménez, A.; Orozco-Benítez, M. G.; García-Paredes, J. D.; Gómez-Aguilar, J. R.; Ontiveros-Guerra, H. M.; Aguirre-Ortega, J. (2011). Efecto de la materia orgánica sobre las propiedades físicas del suelo en un sistema agroforestal de la llanura costera norte de Nayarit, México. Revista Biociencias. 1(3): 27–35. https://doi.org/10.15741/revbio.01.03.04
  41. Navarro, G. G.; Navarro, G. S. (2013). Química agrícola: química del suelo y de los nutrientes esenciales para las plantas. 3a Ed. Madrid: Ediciones Multiprensa. 492p.
  42. Nosheen, S.; Ajmal, I.; Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability. 13(4): 1868. https://doi.org/10.3390/su13041868
  43. Ojeniyi, S. O. (2000). Effect of goat manure on soil nutrients and okra yield in a rain forest area of Nigeria. Applied Tropical Agriculture. 5: 7–12.
  44. PAN. (2021). No more excuses: Global network demands phase-out of Highly Hazardous Pesticides by 2030. https://acortar.link/kqp8Vr
  45. Pathania, P.; Rajta, A.; Singh, P. C.; Bhatia, R. (2020). Role of plant growth-promoting bacteria in sustainable agriculture. Biocatalysis and Agricultural Biotechnology. 30: 101842. https://doi.org/10.1016/j.bcab.2020.101842
  46. Peralta, I. E.; Knapp, S.; Spooner, D. M. (2006). Nomenclature for wild and cultivated tomatoes. https://tgc.ifas.ufl.edu/vol56/html/vol56featr.htm
  47. Pérez-Consuegra, N. (2018). Alternativas a los plaguicidas altamente peligrosos en América Latina y el Caribe. 1st ed. La Habana: Editora Agroecológica. 60p.
  48. Pesticideinfo. (2022). Global Pesticide Bans. https://www.pesticideinfo.org/pesticide-maps/global-ban
  49. Qahraman, R. I. A.; Gülşen, O.; Güneş, A. (2020). Effects of Different Organic Fertilizers on Some Bioactive Compounds and Yield of Cherry Tomato Cultivars. Gesunde Pflanzen. 72: 257–264. https://doi.org/10.1007/s10343-020-00508-4
  50. R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://joaquimllisterri.cat/phonetics/fon_R/R.html.
  51. Rajamani, M.; Negi, A. (2021). Biopesticides for Pest Management. In: Venkatramanan, V.; Shah, S.; Prasad, R. (eds). Sustainable Bioeconomy. pp. 239–266. Singapore: Springer. 337p. https://doi.org/10.1007/978-981-15-7321-7_11
  52. Ramachandran, K.; Tsokos, C. P. (2021). Mathematical Statistics with Applications in R. 3a ed. U.S.A: Elsevier Academic Press. 824p.
  53. Rawat, J.; Sanwal, P.; Saxena, J. (2018). Towards the mechanisms of nutrient solubilization and fixation in soil system. In: Meena, V. (eds.). Role of Rhizospheric Microbes in Soil. pp. 229–257. 1st ed. Singapore: Springer. 290p. https://doi.org/10.1007/978-981-13-0044-8_8
  54. Raza, A.; Tabassum, J.; Kudapa, H.; Vasrhney, R. K. (2021). Can Omics deliver temperature resilient ready-to-grow crops?. Critical Reviews in Biotechnology. 41(8): 1209–1232. https://doi.org/10.1080/07388551.2021.1898332
  55. Saidi, I.; Mouhouche, F.; Abri, H. (2017). Determination of pesticide residues on tomatoes from greenhouses in Boudouaou and Douaouda, Algeria. Quality Assurance and Safety of Crops & Foods. 9(2): 207–212. https://doi.org/10.3920/QAS2015.0716
  56. Savci, S. (2012). An Agricultural Pollutant: Chemical Fertilizer. International Journal of Environmental Science and Development. 3(1): 73–80. https://doi.org/10.7763/ijesd.2012.v3.191
  57. Shafi, J.; Tian, H.; Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment. 31(3): 446–459. https://doi.org/10.1080/13102818.2017.1286950
  58. Sharma, A. (2017). A Review on the Effect of Organic and Chemical Fertilizers on Plants. International Journal for Research in Applied Science & Engineering Technology. 5(II): 677–680. https://doi.org/10.22214/ijraset.2017.2103
  59. Sinha, M. K.; Purcell, W. (2019). Reducing agents in the leaching of manganese ores: A comprehensive review. Hydrometallurgy. 187: 168–186. https://doi.org/10.1016/j.hydromet.2019.05.021
  60. Souri, M.K. (2010). Effectiveness of chloride compared to 3, 4-dimethylpyrazole phosphate on nitrification inhibition in soil. Communications in soil science and plant analysis. 41(14): 1769- 1778. https://doi.org/10.1080/00103624.2010.489139
  61. Souri, M.K.; Neumann, G.; Römheld, V. (2009). Nitrogen forms and water consumption in tomato plants. Horticulture Environment and Biotechnology. 50(5): 377-383.
  62. Thakur, P.; Kumar, S.; Malik, J. A.; Berger, J. D.; Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany. 67(3): 429–443. https://doi.org/10.1016/j.envexpbot.2009.09.004
  63. Thomine, S.; Lanquar, V. (2011). Iron Transport and Signaling in Plants. In: Geisler, M.; Venema, K. (eds) Transporters and Pumps in Plant Signaling. pp. 99-131. 1st ed. Heidelberg: Springer. 388p. https://doi.org/10.1007/978-3-642-14369-4_4
  64. Truong, H. D.; Wang, C. H.; Kien, T. T. (2018). Effect of Vermicompost in Media on Growth, Yield and Fruit Quality of Cherry Tomato (Lycopersicon esculentun Mill.) Under Net House Conditions. Compost Science and Utilization. 26(1): 52–58. https://doi.org/10.1080/1065657X.2017.1344594
  65. Velasco Sánchez, Á.; Delgado García, A.; Moreno Lora, A. (2017). Efecto de inoculantes microbianas en la acumulación de Zn, P y otros micronutrientes. https://idus.us.es/items/c0cfdfd4-8d56-465d-9b66-f69f2590e74a
  66. Wairich, A.; de Oliveira, B. H. N.; Arend, E. B.; Duarte, G. L.; Ponte, L. R.; Sperotto, R. A.; Ricachenevsky F. K.; Palma Fett, J. P. (2019). The Combined Strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Scientific Reports. 9: 16144. https://doi.org/10.1038/s41598-019-52502-0
  67. Wu, W.; Lin, Z.; Zhu, X.; Li, G.; Zhang, W.; Chen, Y.; Ren Lei.; Luo, S.; Lin H.; Zhou, H.; Huang, Y.; Yang, R.; Xie, Y.; Wang, X.; Zhen, Z.; Zhang, D. (2022). Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. European Journal of Soil Biology. 109: 103384. https://doi.org/10.1016/j.ejsobi.2022.103384
  68. Zainuddin, N.; Keni, M. F.; Ibrahim, S. A. S.; Masri, M. M. M. (2022). Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatalysis and Agricultural Biotechnology. 39: 102237. https://doi.org/10.1016/j.bcab.2021.102237
  69. Zulueta-Rodríguez, R.; Hernández-Montiel, L. G.; Reyes-Pérez, J. J.; González-Morales, G. Y.; Lara-Capistrán, L (2020). Effects of co-inoculation of Bacillus subtilisand Rhizoglomusintraradices in tomato production (Solanum lycopersicum L.) in a semi-hydroponic system. Revista Bio Ciencias. 7: e761. https://doi.org/10.15741/revbio.07.e671

Downloads

Download data is not yet available.