Microbiolization with Bacillus sp. in irrigated rice seed positively impacts physiological and phytosanitary quality
DOI:
https://doi.org/10.22267/rcia.20234003.221Keywords:
Biocontrol, germination, oryza sativa, seed treatmentAbstract
Seed treatment is an important practice for reducing pathogens. The microbiolization technique has been used to provide economic and environmental benefits, starting with the selection of microorganisms and the identification of their mechanisms of action. In this sense, Bacillus sp. has stood out, having the capacity to promote growth and phytopathogenic control of several important crops such as rice. This study was conducted aiming to evaluate the protective effects of inoculation with six isolates of Bacillus sp. in rice seeds. Germination, germination speed index, shoot fresh weight, root fresh weight, seeding size, indoleacetic acid production, cellulase production, and antagonist phytosanitary analysis were evaluated. Our results revealed the best efficacy of isolate 47b in the tests of rice seed germination, root fresh weight, shoot fresh weight, seedling size, indoleacetic acid, and cellulase index. The 47b isolate, as it expressed better results in the previous tests, was subjected to different pHs, with pH 4, pH 6, and pH 8 being more efficient as a control measure (in the antagonism test) against Curvularia sp. This 47b isolate also performed very efficiently against Colletotrichum sp. at the pH4 and Macrophomina sp. at the pH 6. Our findings revealed the potential of the isolate 47b as a plant protectant against relevant phytopathogens and demonstrated its potential as a plant growth promoter.
Downloads
Metrics
References
Barnett, H.; Hunter, B. (1998). Illustrated genera of imperfect fungi. 4th ed. USA: The American Phytopathological Society. 218p.
Behera, B.C.; Sethi, B.K.; Mishra, R.R.; Dutta, S.K.; Thatoi, H.N. (2016). Microbial cellulases - Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology. 15(1): 197-210. https://doi.org/10.1016/j.jgeb.2016.12.001
CONAB - Companhia Nacional de Abastecimento (2021). Acompanhamento da safra brasileira de grãos - sexto levantamento, março 2021 - safra 2020/2021. Brasília: Conab. 106p.
Emayavarman, P.; Renukadevi, P.; Ravikesavan, R.; Nakkeeran, S. (2019). Antifungal Efficacy and Growth Promotion by Trichoderma virens TRI 37 and Bacillus amyloliquefaciens (VB7) against Macrophomina phaseolina - the Maize Charcoal Rot Pathogen. International Journal of Current Microbiology and Applied Sciences. 8(11): 2682-2693. https://doi.org/10.20546/ijcmas.2019.811.307
Fokkema, N.J. (1976). Antagonism between fungal saprophytes and pathogens on aerial plant surfaces. In: Dickinson, C.H.; Preece, T.F. Microbiology of Aerial Plant Surfaces. pp. 487-505. London: Academic Press.
Glick, B.R.; Christian, B.J.; Melinda, M.K.S.; Pasternak. (1994). 1- Aminocyclopropane-1- carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR-12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology. 40 (11): 911-915.
Gordon, S.A.; Weber, R.P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology. 26 (1):192-195. https://doi.org/10.1104/pp.26.1.192
Gu, Q.; Yang, Y.; Yuan, Q.; Shi, G.; Wu, L.; Lou, Z.; Huo, R.; Wu, H. (2017). Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonist interaction with the plant-pathogenic fungus Fusarium graminearum. Applied Environmental Microbiology. 83 (19): e01075-17. https://doi.org/10.1128/AEM.01075-17
Hashem, A.; Tabassum, B.; Allah, E.F.A. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudita Journal Biological Sciences. 26(6): 1291–1297. doi: 10.1016/j.sjbs.2019.05.004
Henning, A.A. (2005). Patologia e tratamento de sementes: noções gerais. 2nd ed. Londrina: Embrapa. 52p.
Huang, Z.; Bonsall, R.F.; Mavrodi, D.V.; Weller, D.M.; Thomashow, L.S. (2004). Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production. FEMS Microbiology Ecology. 49 (2): 243-251.
Jain, S.; Kumari, S.; Vaishnav, A.; Choudhary, D.K.; Sharma, K.P. (2016). Isolation and characterization of plant growth promoting bacteria from soybean rhizosphere and their effect on soybean plant growth promotion. International Journal of Advanced Scientific and Technical Research. 5 (6): 397-410.
Junges, E.; Bastos, B.O.; Toebe, M.; Muller, J.; Pedroso, D.C.; Muniz, M.F.B. (2014). Restrição hídrica e peliculização na microbiolização de sementes de milho com Trichoderma spp. Comunicata Scientiae. 5 (1):18-25.
Kilic-Ekici, O.; Yuen, G.Y. (2004). Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biological Control. 30 (2): 446-455.
Kotowski, F. (1926). Temperature relations to germination of vegetable seed proc. American Society for Horticultural Science. 23: 176-184.
Kurata, A.; Yamaura, Y.; Tanaka, T.; Kato, C.; Nakasone, K.; Kishimoto, N. (2017). Antifugal peptidic compound from the deep-sea bacterium Aneurinibacillus sp. YR247. World J. Microbiol. Biotechnol. 33: 1-8.
Lazzaretti, E.; de Melo, I.S. (2005). Influência de Bacillus subtilis na promoção de crescimento de plantas e nodulação de raízes de feijoeiro. Embrapa Meio Ambiente. Boletim de Pesquisa e Desenvolvimento. (28). 21.
Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Buckley, D.H.; Stahl, D.A. (2016). Microbiologia de Brock. 14th Ed. Porto Alegre: Artmed Editora. 1006p.
Matić, S.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. (2014). Antagonistic yeasts and thermotherapy as seed treatments to control Fusarium fujikuroi on rice. Biological Control. 73: 59-67. https://doi.org/10.1016/j.biocontrol.2014.03.008
MAPA - Ministério da Agricultura, Pecuária e Abastecimento (2009). Regras para análise de sementes. Secretaria Nacional de Defesa Agropecuária. Brasília: Mapa/ACS. 398 p.
Oliveira, A.L.M.; Costa, K.R.; Ferreira, D.C.; Milani, K.M.L.; Santos, O.J.A.P.; Silva, M.B.; Zuluanga, Y.A. (2014). Biodiversity of soil bacteria and its applications for a sustainable agriculture. Biochemistry and Biotechnology Reports. 3 (1): 56-77.
Pádua, G.P.; Zito, R.K.; Arantes, N.E.; França Neto, J.B. (2010). Influência do tamanho da semente na qualidade fisiológica e na produtividade da cultura da soja. Revista Brasileira de Sementes. 32 (3): 9-16. https://doi.org/10.1590/S0101-31222010000300001
Patel, S.T., Minocheherhomji, F.P. (2018). Review: Plant Growth Prooting Rhizobacteria: Blessing to Agriculture. International Journal of Pure e Applied Bioscience. 6 (2): 481-492.
Praça, L. B.; Morinaga, C.; Medeiros, P. T.; Melatti, V. M.; Martins, É. S.; Dumas, V. F.; Falcão, R.; Monnerat, R. G. (2009). Isolamento e caracterização de estirpes de Bacillus thuringiensis coletadas em solos do oeste baiano. Universitas: Ciências da Saúde. 7(2): 1-18. https://doi.org/10.5102/ucs.v7i2.999
Prigent-Combaret, C.; Blaha, D.; Pothier, J.F.; Vial, L.; Poirier, M.A.; Wisniewski-Dyé, F.; Moënne-Loccoz, Y. (2008). Physical organization and phylogenetic analysis of acdR as leucineresponsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acds in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiology Ecology. 65 (1): 202-219.
Puzzi, D. (2000). Abastecimento e Armazenagem de grãos. Campinas: Instituto Campineiro de Ensino Agrícola. 666p.
Raddadi, N.; Cherif, A.; BoudabouS, A.; Daffonchio, D. (2008). Screening of plant growth promoting traits of Bacillus thuringiensis. Annals of Microbiology. 58 (1): 4-52.
Rocha, F.Y.O.; Oliveira, C.M.; da Silva, P.R.A.; de Melo, L.H.V.; Carmo, M.G.F.; Baldani, J.I. (2017). Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. Lycopersici. Applied Soil Ecology. 120: 8-19. https://doi.org/10.1016/j.apsoil.2017.07.025
Schwartz, A.R.; Ortiz, I.; Maymon, M.; Fujishige, N A.; Herbold, C.W.; Vijanderan, J.A. (2013). Bacillus simplex alters legume root architecture and nodule morphology when co-inoculated with Rhizobium. Agronomy. 3: 595 - 620.
Soares, V.N.; Moura, A.B. (2007). Prospecção por bactérias produtoras de antibióticos ativos contra fungos causadores de manchas foliares em arroz. https://www2.ufpel.edu.br/cic/2006/resumo_expandido/CA/CA_00429.pdf
Soares, V.N.; Tillmann, M.A.A.; Moura, A.B.; Zanatta, Z.G.C.N. (2012). Physiological potential of rice seeds treated with rhizobacteria or the insecticide thiamethoxam. Revista Brasileira de Sementes. 34 (4): 563-572. https://doi.org/10.1590/S0101-31222012000400006
Taiz, L.; Zeiger, E. (2004). Fisiologia vegetal. 3th Ed. Porto Alegre: Artmed. 719p.
Timms-Wilson, T.M.; Ellis, R.J.; Renwick, A.; Rhodes, D.J.; Mavrodi, D.V.; Weller, D.M.; Bailey, M.J. (2000). Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions. 13 (12): 1293-1300
Tsavkelova, E.A.; Klimova, S.Y.; Cherdyntseva, T.A.; Netrusov, A.I. (2006). Microbial producers of plant growth stimulators and their practical use: a review. Applied biochemistry and microbiology. 42 (2):117-12.
Xie, S.; Liu, J.; Gu, S.; Chen, X.; Jiang, H.; Ding, T. (2020). Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia lunata. Annals of Microbiology. 70 (2): 1-10. https://doi.org/10.1186/s13213-020-01553-0
Watanabe, S. (2010). Equations of states in singular statistical estimation. Neural Networks. 23 (1):20-34.
Wu, J.; Chou, H.; Huang, J.; Deng, W. (2021). Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola. Microbiological Research. 251:126815. 10.1016/j.micres.2021.126815
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.