contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 1 (2025): Revista de Ciencias Agrícolas - Primer cuatrimestre, Enero - Abril 2025

Unmanned Aerial Vehicles (UAVs) for vegetation index analysis in traditional agriculture

DOI
https://doi.org/10.22267/rcia.20254201.251
Submitted
October 7, 2023
Published
2025-04-26

Abstract

The use of spectral remote sensing in agriculture allows the obtaining of relevant and accurate data on crop vigor in in a short time. This makes it possible to make decisions that improve farmers' profitability. This study defines the use of remote sensing devices that capture electromagnetic regions represented in multispectral images from the visible red (RED) and near-infrared (NIR) bands to evaluate the spectral response in a potato crop. The images obtained allowed the calculation of the Normalized Difference Vegetation Index (NDVI) and the Soil-Adjusted Vegetation Index (SAVI) to compare spectral responses in different phenological stages of a potato crop. These results were verified in the field to establish the causes of the negative and positive values in the calculation of the indices. In the early stages of crop development, there were areas with NDVI and SAVI values (-0.3 and -0.4) corresponding to the reflectance in bare soil. In later stages, such as flowering and filling, there were positive values of NDVI and SAVI (0.06 and 0.1) in most of the areas studied; negative values (-0.2 and -0.4) were also found, indicating problems of vegetative development associated with the presence of invasive plant species, highlighting the correction of reflectance between the two indices. The results obtained show that the vegetation indices allow the identification of characteristics and conditions in the potato crop, thus demonstrating the technical feasibility of this technological tool in production systems in the region.

References

  1. Borchardt, L.; Casco, M. E.; Silvestre-Albero, J. (2018). Methane hydrate in confined spaces: an alternative storage system. ChemPhysChem. 19(11): 1298-1314. https://doi.org/10.1002/cphc.201701250
  2. Cáceres, M.; Dorado, A. D.; Gentina, J. C.; Aroca, G. (2017). Oxidation of methane in biotrickling filters inoculated with methanotrophic bacteria. Environmental Science and Pollution. 24(33): 25702-25712.https://doi.org/10.1007/s11356-016-7133-z
  3. Cai, L.; Wu, D.; Xia, J.; Shi, H.; Kim, H. (2019). Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Science of The Total Environment. 671: 1101-1107. https://doi.org/10.1016/j.scitotenv.2019.03.434
  4. Cai, S.; Phinney, D. M.; Heldman, D. R.; Snyder, A. B. (2020). All treatment parameters affect environmental surface sanitation efficacy, but their relative importance depends on the microbial target. Applied and Environmental Microbiology. 87(1): e01748-20. https://doi.org/10.1128/AEM.01748-20
  5. Carabelli, A. M.; Dubern, J.-F.; Papangeli, M.; Farthing, N. E.; Sanni, O.; Heeb, S.; Hook, A. L.; Alexander, M. R.; Williams, P. (2022). Polymer-directed inhibition of reversible to irreversible attachment prevents Pseudomonas aeruginosa biofilm formation. BioRxiv. 475475. https://doi.org/10.1101/2022.01.08.475475
  6. Cassarini, C.; Bhattarai, S.; Rene, E. R.; Vogt, C.; Musat, N.; Esposito, G.; Lens, P. N. L. (2019a). Enrichment of anaerobic methanotrophs in biotrickling filters using different sulfur compounds as electron acceptor. Environmental Engineering Science. 36(4): 431-443. https://doi.org/10.1089/ees.2018.0283
  7. Cassarini, C.; Rene, E. R.; Bhattarai, S.; Vogt, C.; Musat, N.; Lens, P. N. L. (2019b). Anaerobic methane oxidation coupled to sulfate reduction in a biotrickling filter: Reactor performance and microbial community analysis. Chemosphere. 236: 124290. https://doi.org/10.1016/j.chemosphere.2019.07.021
  8. Chaghouri, M. (2021). Analyse et purification du biogaz par biofiltration et valorisation énergétique par reformage catalytique. Université du Littoral Côte d’Opale. https://tel.archives-ouvertes.fr/tel-03346013
  9. DeFabrizio, S.; Glazener, W.; Hart, C.; Henderson, K.; Kar, J.; Katz, J.; Pozas Pratt, M.; Rogers, M.; Tryggestad, C.; Ulanov, A. (2021). Curbing methane emissions: How five industries can counter a major climate threat. https://acortar.link/8EYv29
  10. Domingues, E.; Fernandes, E.; Gomes, J.; Martins, R. C. (2021). Swine wastewater treatment by Fenton’s process and integrated methodologies involving coagulation and biofiltration. Journal of Cleaner Production. 293: 126105. https://doi.org/10.1016/j.jclepro.2021.126105
  11. Ferdowsi, M.; Khabiri, B.; Buelna, G.; Jones, J. P.; Heitz, M. (2022). Air biofilters for a mixture of organic gaseous pollutants: an approach for industrial applications. Critical Reviews in Biotechnology. 43(7): 1019-1034. https://doi.org/10.1080/07388551.2022.2100735
  12. Gassman, K. I.; Hill, S. G.; Smith, N. D.; Kennedy, M. S.; Tzeng, T.-R.; Beladi Behbahani, S.; Helms, S. M.; O’Neill, L.; DesJardins, J. D. (2022). The effect of surface roughness and chitosan deposition volume on microbial growth in biofilm involving titanium surfaces for orthopedic applications. Materialia. 24: 101481. https://doi.org/10.1016/j.mtla.2022.101481
  13. Gómez-Borraz, T. L.; González-Sánchez, A.; Bonilla-Blancas, W.; Revah, S.; Noyola, A. (2017). Characterization of the biofiltration of methane emissions from municipal anaerobic effluents. Process Biochemistry. 63: 204-213. https://doi.org/10.1016/j.procbio.2017.08.011
  14. Gómez-Cuervo, S.; Alfonsín, C.; Hernández, J.; Feijoo, G.; Moreira, M. T.; Omil, F. (2017). Diffuse methane emissions abatement by organic and inorganic packed biofilters: Assessment of operational and environmental indicators. Journal of Cleaner Production. 143: 1191-1202. https://doi.org/10.1016/j.jclepro.2016.11.185
  15. Jawad, J.; Khalil, M. J.; Sengar, A. K.; Zaidi, S. J. (2021). Experimental analysis and modeling of the methane degradation in a three stage biofilter using composted sawdust as packing media. Journal of Environmental Management. 286: 112214. https://doi.org/10.1016/j.jenvman.2021.112214
  16. Jugnia, L.-B.; Mottiar, Y.; Djuikom, E.; Cabral, A. R.; Greer, C. W. (2012). Effect of compost, nitrogen salts, and NPK fertilizers on methane oxidation potential at different temperatures. Applied Microbiology and Biotechnology. 93(6): 2633-2643. https://doi.org/10.1007/s00253-011-3560-4
  17. Khabiri, B.; Ferdowsi, M.; Buelna, G.; Jones, J. P.; Heitz, M. (2020a). ‏Methane biofiltration under different strategies of nutrient solution addition. Atmospheric Pollution. 11(1): 85-93. https://doi.org/10.1016/j.apr.2019.09.018
  18. Khabiri, B.; Ferdowsi, M.; Buelna, G., Jones, J. P.; Heitz, M. (2020b). Simultaneous biodegradation of methane and styrene in biofilters packed with inorganic supports: Experimental and macrokinetic study. Chemosphere. 252: 126492. https://doi.org/10.1016/j.chemosphere.2020.126492
  19. Khabiri, B.; Ferdowsi, M.; Buelna, G.; Jones, J. P.; Heitz, M. (2022). Bioelimination of low methane concentrations emitted from wastewater treatment plants: A review. Critical Reviews in Biotechnology. 42(3). 450-467. https://doi.org/10.1080/07388551.2021.1940830
  20. Lancon, O.; Hascakir, B. (2018). Contribution of Oil and Gas Production in The US to The Climate Change. https://doi.org/10.2118/191482-ms
  21. Lebrero, R.; Osvaldo, D. F.; Pérez, V.; Cantera, S.; Estrada, J. M.; Muñoz, R. (2019). Biological treatment of gas pollutants in partitioning bioreactors. In: Huerta-Ochoa (ed.). Advances in Chemical Engineering. 54: pp. 239-274. AcademicPress. 274p. https://doi.org/10.1016/bs.ache.2018.12.003
  22. Lebrero, R.; Rodríguez, E.; Collantes, M.; De Juan, C.; Norden, G.; Rosenbom, K.; Muñoz, R. (2021). Comparative performance evaluation of commercial packing materials for malodorants abatement in biofiltration. Applied Sciences. 11(7): 2966. https://doi.org/10.3390/app11072966
  23. Liu, L.-Y.; Xie, G.J.; Xing, D.F.; Liu, B.F.; Ding, J.; Ren, N.Q. (2020a). Biological conversion of methane to polyhydroxyalkanoates: Current advances, challenges, and perspectives. Environmental Science and Ecotechnology. 2: 100029. https://doi.org/10.1016/j.ese.2020.100029
  24. Liu, Q.; Liu, J.; Liu, H.; Liang, L.; Cai, Y.; Wang, X.; Li, C. (2020b). Vegetation dynamics under water-level fluctuations: Implications for wetland restoration. Journal of Hydrology. 581: 124418. https://doi.org/10.1016/j.jhydrol.2019.124418
  25. Mayhew, M. J.; Simonoff, J. S. (2015). Non-white, no more: Effect coding as an alternative to dummy coding with implications for higher education researchers. Journal of College Student Development. 56(2): 170–175. https://doi.org/10.1353/csd.2015.0019
  26. Mayer, F.; Enzmann, F.; Lopez, A. M.; Holtmann, D. (2019). Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide. Bioresource Technology. 289: 121706. https://doi.org/10.1016/j.biortech.2019.121706
  27. Merouani, E. F. O.; Khabiri, B.; Ferdowsi, M.; Benyoussef, E. H.; Malhautier, L.; Buelna, G.; Jones, J. P.; Heitz, M. (2022). Biofiltration of methane in presence of ethylbenzene or xylene. Atmospheric Pollution Research. 13(1): 101271. https://doi.org/10.1016/j.apr.2021.101271
  28. Nisbet, E. G.; Fisher, R. E.; Lowry, D.; France, J. L.; Allen, G.; Bakkaloglu, S.; Broderick, T. J.; Cain, M.; Coleman, M.; Fernandez, J.; Forster, G.; Griffiths, P. T.; Iverach, C. P.; Kelly, B. F. J.; Manning, M. R.; Nisbet-Jones, P. B. R.; Pyle, J. A.; Townsend-Small, A.; al-Shalaan, A.; … Zazzeri, G. (2020). Methane mitigation: Methods to reduce emissions, on the path to the Paris agreement. Reviews of Geophysics. 58(1): e2019RG000675. https://doi.org/10.1029/2019RG000675
  29. Pecorini, I.; Rossi, E.; Iannelli, R. (2020). Mitigation of methane, NMVOCs and odor emissions in active and passive biofiltration systems at municipal solid waste landfills. Sustainability. 12(8): 3203. https://doi.org/10.3390/su12083203
  30. Pratt, C.; Tate, K. (2018). Mitigating methane: emerging technologies to combat climate change’s second leading contributor. Environmental Science & Technology. 52(11): 6084-6097. https://doi.org/10.1021/acs.est.7b04711
  31. Su, Q.; Dai, D.; Liao, Y.; Han, H.; Wu, J.; Ren, Z. (2023). Synthetic microbial consortia to enhance the biodegradation of compost odor by biotrickling filter. Bioresource Technology. 387: 129698. https://doi.org/10.1016/j.biortech.2023.129698
  32. Reza Bacelis, G.; Sauri Riancho, M.R; Castillo Borges, E.R (2009). Aprovechamiento de la composta para la oxidación de metano. Revista Aidis de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica. 1(1): 1-13
  33. Sáez-Orviz, S.; Lebrero, R.; Terrén, L.; Doñate, S.; Esclapez M.D.; Saúco, L.; Muñoz, R. (2024). Evaluation of the performance of new plastic packing materials from plastic waste in biotrickling filters for odour removal. Process Safety and Environmental Protection. 191(B): 2361-2372. https://doi.org/10.1016/j.psep.2024.10.009.
  34. Sanucci, C. (2021). Evaluación de los niveles de metano en zona de producción petrolera mediante el uso de imágenes satelitales bajo el enfoque de la ciencia de datos. http://sedici.unlp.edu.ar/handle/10915/133520
  35. Sauer, K.; Stoodley, P.; Goeres, D. M.; Hall-Stoodley, L.: Burmølle, M.; Stewart, P. S.; Bjarnsholt, T. (2022). The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nature Reviews Microbiology. 20: 608–620. https://doi.org/10.1038/s41579-022-00767-0
  36. Soeder, D. J. (2021). Greenhouse gas sources and mitigation strategies from a geosciences perspective. Advances in Geo-Energy Research. 5(3): 274-285. https://doi.org/10.46690/ager.2021.03.04
  37. Thomasen, T. B.; Scheutz, C.; Kjeldsen, P. (2019). Treatment of landfill gas with low methane content by biocover systems. Waste Management. 84: 29-37. https://doi.org/10.1016/j.wasman.2018.11.011
  38. Venturini, M.; Rossen, A.; Bucci, P.; Silva Paulo, P. (2022). Applying the nernst equation to control ORP in denitrification process for uranium-containing nuclear effluent with high loads of nitrogen and COD. Water. 14(14): 2227. https://doi.org/10.3390/w14142227
  39. Vikrant, K.; Kailasa, S. K.; Tsang, D. C. W.; Lee, S. S.; Kumar, P.; Giri, B. S.; Singh, R. S.; Kim, K.-H. (2018). Biofiltration of hydrogen sulfide: Trends and challenges. Journal of Cleaner Production. 187: 131-147. https://doi.org/10.1016/j.jclepro.2018.03.188
  40. Wu, H.; Yan, H.; Quan, Y.; Zhao, H.; Jiang, N.; Yin, C. (2018). Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. Journal of Environmental Management. 222: 409-419. https://doi.org/10.1016/j.jenvman.2018.06.001
  41. Zimmermann, M.; Boysen, B.; Ebrahimi, E.; Fischer, M.; Henzen, E.; Hilsdorf, J.; Kleber, J.; Lackner, S.; Parsa, A.; Rudolph, K.U.; Schöller, S.; Shalizi, F.; Sinn, J.; Zinkernagel, J. (2021). Replication Guideline for Water Reuse in Agricultural Irrigation. https://acortar.link/CP7qJQ

Downloads

Download data is not yet available.