contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 41 No. 3 (2024): Revista de Ciencias Agrícolas - Tercer cuatrimestre, Septiembre - Diciembre 2024

Net primary productivity in a Tropical Dry Forest of northern Colombia

DOI
https://doi.org/10.22267/rcia.20244103.237
Submitted
January 22, 2024
Published
2024-12-21

Abstract

Tropical dry forests are the world’s second most relevant forest type, home to unique vegetation and highly threatened by human activity. This study aimed to determine changes in plant biomass within a tree-hectare permanent plot of tropical dry forest (TDF) at the Universidad del Magdalena over 12 months. The composition, structure, and plant dynamics were characterized using drone imagery and allometric equations for dry climates. Biomass was calculated for 848 trees and shrubs with a diameter at breast height (DBH) over 10 cm, and a Normalized Difference Vegetation Index (NDVI) time series was established.  It was possible to identify the change in NDVI with a positive trend in areas with higher soil moisture, higher coverage, vegetation network, and limited access. Likewise, the findings show that areas with lower coverage have greater accessibility and lower diversity. The vegetation cover dynamics within the Universidad del Magdalena’s TDF plot revealed low variability in NDVI over the study period, with values exceeding 0.7 in 58% of observations, reflecting a linear trend with the rainy seasons. Estimating the vegetal cover biomass is feasible using differentiated indices and techniques that reduce costs and time and do not have destructive implications for the vegetation.

References

  1. Aguirre, S.; Piraneque, N.; Mercado, T. (2022). Suelo y cambio climático: Incluye estudio de casos. 1a ed. Colombia: Editorial Unimagdalena. 196p.
  2. Alvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; de las Salas, G.; del Valle, I.; Lema, A.; Moreno, F.; Orrego, S.; Rodríguez, L. (2012). Tree aboveground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management. 267: 297-308. https://doi.org/10.1016/j.foreco.2011.12.013
  3. Anaya-Acevedo, J. A.; Chuvieco Salinero, E.; Palacios Orueta, A. (2008). Estimación de biomasa aérea en Colombia a partir de imágenes MODIS. Revista de Teledetección. 30: 5-22.
  4. Arrázola, P. G.; Buelvas, D. H.; Arrieta, D. Y. (2008). Aprovechamiento de las características nutricionales del almendro de la india (Terminalia catappa L.) como suplemento en la alimentación animal. Revista MVZ Córdoba. 13(1): 1205-1214.
  5. Baseca, C. C. (2019). Plataforma tecnológica multimedia para la agricultura de precisión. https://riunet.upv.es/handle/10251/135820#
  6. Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; Hansen, M.; Pittman, K.; Birkett, C.; Williams, D.; Reynolds, C.; Doorn, B. (2010). Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project. Remote Sensing. 2(6): 6. https://doi. org/10.3390/rs2061589
  7. Benítez, A.; Blanco-Torres, A.; Cabrera, M.; Calderón-Acevedo, C.; Castaño-Naranjo, A.; Castro-Lima, F.; Corzo, G.; Cuadros, H.; de Luna, G.; Devia, W.; Díaz-Pulido, A.; Etter, A.; Forero, F.; Galvis, G.; Gómez-Ruiz, D. A.; Gómez, J. P.; Gómez-Martínez, M.; González, F. A.; González, I., … Vergara-Valera, H. (2014). El bosque seco tropical en Colombia. Colombia: Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt. 350p.
  8. Bernal, R.; Gradstein, S.; Celis, M. (Eds.). (2020). Catálogo de plantas y líquenes de Colombia. Colombia: Universidad Nacional de Colombia. 1504p.
  9. Chave, J.; Riéra, B.; Dubois, M. A. (2001). Estimation of biomass in a neotropical forest of French Guiana: Spatial and temporal variability. Journal of Tropical Ecology. 17(1): 79-96. https:// doi.org/10.1017/S0266467401001055
  10. Gautam, H.; Arulmalar, E.; Kulkarni, M. R.; Vidya, T. N. C. (2019). NDVI is not reliable as a surrogate of forage abundance for a large herbivore in tropical forest habitat. Biotropica. 51(3): 443456. https://doi.org/10.1111/btp.12651
  11. Girón-Angarita, K. J. (2021). Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia. https://shorturl.at/1cdxs
  12. Gómez, J. D.; Etchevers, J. D.; Campo, J.; Monterroso, A. I.; Paustian, K.; Asensio, C.; Gómez, J. D. (2021). Relaciones alométricas para estimar la biomasa aérea de especies tropicales de bosques estacionalmente secos del centro de México. Madera y Bosques. 27(4). https://doi.
  13. org/10.21829/myb.2021.2742441
  14. Guzmán Q., J. A.; Sanchez-Azofeifa, G. A.; Espírito-
  15. Santo, M. M. (2019). MODIS and PROBA-V NDVI Products Differ when Compared with Observations from Phenological Towers at Four Tropical Dry Forests in the Americas. Remote Sensing. 11 (19): 2316. https://doi.org/10.3390/ rs11192316
  16. Gwal, S.; Singh, S.; Gupta, S.; Anand, S. (2020). Understanding forest biomass and net primary productivity in Himalayan ecosystem using geospatial approach. Modeling Earth Systems and Environment. 6(4): 2517-2534. https://doi. org/10.1007/s40808-020-00844-4
  17. Hasnat, G. N.; Hossain, M. (2020). GlobalOverview-of-Tropical-Dry-Forests. In: Bhadouria, R.; Tripathi, S.; Srivastava, P.; Singh, P. (eds.). Handbook of Research on the Conservation and Restoration of Tropical Dry Forest. pp. 1-23. 1 edition. U.S.A: IGI Global. 465p.
  18. IDEAM. (2018). Manual de Campo Inventario Forestal Nacional Colombia. Bogotá, Colombia: Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). 160p.
  19. López, N.; Márquez Romance, A.; Guevara Pérez, E. (2020). Change dynamics of land-use and landcover for tropical wetland management. Water Practice & Technology. 15(3): 632-644. https:// doi.org/10.2166/wpt.2020.049
  20. Mngadi, M.; Odindi, J.; Mutanga, O.; Sibanda, M. (2022). Estimating aboveground net primary productivity of reforested trees in an urban landscape using biophysical variables and remotely sensed data. Science of The Total Environment. 802: 149958. https://doi.org/10.1016/j.scitotenv.2021.149958
  21. Mota, J. A. X.; Lemos, H. Á. F.; Ferreira, W. N.; Silva, M. A. M. (2020). Allelopathic effect of Azadirachta indica fresh leaves on the germination of native plants in the Seasonally Dry Tropical Forest.
  22. Scientia Plena. 16(12): 124202. https://doi. org/10.14808/sci.plena.2020.124202
  23. Ochoa, C.; Patricia, L. (2020). Actividad insecticida de extractos de Azadirachta indica A. Juss. (Neem- meliaceae) sobre áfidos plagas en dos cultivos del género Vigna (Fabaceae) en el departamento de Córdoba (Colombia). https://shorturl.at/XAFZd
  24. Paz Pellat, F.; Díaz-Solís, H. (2018). Relaciones entre la precipitación, producción de biomasa e índices espectrales de la vegetación: Alcances y limitaciones. Terra Latinoamericana. 36(2): 153168. https://doi.org/10.28940/terra.v36i2.235
  25. Phillips, J.; Duque, A.; Cabrera, K.; Yepes, A.; Navarrete, D.; García, M.; Álvarez, E.; Cabrera, E.; Cárdenas, D.; Galindo, G.; Ordoñez, M.; Rodríguez, M.; Vargas, D. (2011). Estimación de las reservas potenciales de carbono almacenadas en la biomasa aérea en bosques naturales de Colombia. Colombia: Instituto de Hidrología, Meteorología, y Estudios Ambientales (IDEAM). 68p.
  26. Pluemjit, O.; Suksombut, W.; Kalpax, T.; Siriphanich, S. (2018). Flower development and factors affecting the blooming time of Tabebuia rosea (Bertol.) DC. Acta Horticulturae. 1201: 621-626. https://doi.org/10.17660/ActaHortic.2018.1201.83
  27. R Core Team. (2022). R: Development Core Team, R: a language and environment for statistical computing. https://www.R-project.org
  28. Rangel, J.; Cogollo, J.; Cortés-Duque, J.; Rivera Diaz, O. (2009). Amenazas a la biota (vegetación, fauna, flora, ecosistemas) de la Serranía del Perijá. In: Rangel, J.O. Colombia, Diversidad Biótica VIII. pp. 661-676. Colombia: Arfo Eds. 728p.
  29. Revueltas, J. E.; Zabaleta, A.; Mercado, T.; Aguirre, S. (2020). Cambios en el clima local y su efecto en la regulación hídrica en microcuencas del departamento del Magdalena, Norte de Colombia. Información tecnológica. 31(6): 193-206. https:// doi.org/10.4067/S0718-07642020000600193
  30. Rouse Jr, J. W.; Haas, R. H.; Deering, D. W.; Schell, J. A.; Harlan, J.C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. EE.UU: Progress report NASA-CR-139243, Remote Sensing Center. College Station Texas. 8p.
  31. Schlegel, B.; Gayoso, J.; Guerra, J. (2001). Manual de procedimientos para inventarios de carbono en ecosistemas forestales. Chile: Universidad Austral de Chile. 17p.
  32. Sichaem, J.; Kaennakam, S.; Siripong, P.; Tip-pyang, S. (2012). Tabebuialdehydes A-C, cyclopentene
  33. dialdehyde derivatives from the roots of Tabebuia rosea. Fitoterapia. 83(8): 1456-1459. https://doi.
  34. org/10.1016/j.fitote.2012.08.010
  35. Singh, B.; Jeganathan, C.; Rathore, V. S. (2020). Improved NDVI based proxy leaf-fall indicator to assess rainfall sensitivity of deciduousness in the central Indian forests through remote sensing.
  36. Scientific Reports. 10(1): 17638. https://doi. org/10.1038/s41598-020-74563-2
  37. Siyum, Z. G. (2020). Tropical dry forest dynamics in the context of climate change: syntheses of drivers, gaps, and management perspectives.
  38. Ecological Processes. 9(1): 1-16. https://doi. org/10.1186/s13717-020-00229-6
  39. Srinivas, K.; Sundarapandian, S. (2019). Biomass and carbon stocks of trees in tropical dry forest of East Godavari region, Andhra Pradesh, India. Geology, Ecology, and Landscapes. 3(2): 114122. https://doi.org/10.1080/24749508.2018. 1522837
  40. Stan, K.; Sanchez-Azofeifa, A. (2019). Tropical dry forest diversity, climatic response, and resilience
  41. in a changing climate. Forests. 10(5): 443. https:// doi.org/10.3390/f10050443
  42. Thakur, T. K.; Swamy, S. L.; Bijalwan, A.; Dobriyal, M. J. R. (2019). Assessment of biomass and net primary productivity of a dry tropical forest using geospatial technology. Journal of Forestry Research. 30(1): 157-170. https://doi.
  43. org/10.1007/s11676-018-0607-8
  44. Zaitunah, A.; Samsuri, Ahmad, A. G.; Safitri, R. A. (2018). Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. IOP Conference Series: Earth and Environmental Science. 126: 012112. https://doi. org/10.1088/1755-1315/126/1/012112

Downloads

Download data is not yet available.