contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 2 (2025): Revista de Ciencias Agrícolas - Second four, May - August 2025

Effect of the application of organic materials on the physical properties of an Inceptisol

DOI
https://doi.org/10.22267/rcia.20254202.265
Submitted
June 13, 2024
Published
2025-08-28

Abstract

Soil agricultural production is vital for ensuring people's nutrition. However, improper use has led to soil degradation, reducing its productive capacity. Adding organic matter improves the physical properties of soil. This study aimed to evaluate how incorporating organic materials affects certain soil physical properties on the 'La María' farm. A completely randomized design was used with five treatments: applying raw rice husk, toasted rice husk, chicken manure, liquid organic fertilizer, and a control. There were no significant differences observed in soil penetration resistance (PR), a property linked to soil compaction and root growth potential, with values ranging from 500 to 1250 kPa at depths of 2.5 to 17.5 cm. PR also showed temporal variation depending on rainfall. Organic material additions reduced apparent bulk density from 1.63 to 1.45 g/cm³; however, this effect is temporary, and materials should be reapplied about every six months. All tested organic materials promoted soil particle aggregation, increasing it from 23.28 to 5.23 mm. Higher application rates of these materials are recommended to achieve a greater impact on the soil's physical properties.

References

  1. ABIMGRA (2020). Compuesto abimgra- Ficha técnica. https://abimgra.com/f-tecnicas/ficha-tec-ab-compuesto.pdf
  2. Abonex, S. (2018). Humus líquido de lombriz - Ficha técnica. https://www.facebook.com/abonexsas/?locale=es_LA
  3. Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M.; Franzluebbers, A.J. (2015). Soil degradation in India: Challenges and potential solutions. Sustainability. 7(4): 3528–3570. https://doi.org/10.3390/su7043528
  4. Borges, W.L.B.; Souza, I.M.D.; Sá, M.E.; Alves, M.C. (2016). Estabilidade de agregados em Latossolos sob plantas de cobertura em rotação com soja e milho. Revista Brasileira de Ciências Agrárias. 11(3): 156–162. https://doi.org/10.5039/agraria.v11i3a5378
  5. Bracho, J.; Pierre, F.; Quiroz, A. (2009). Caracterización de componentes de sustratos locales para la producción de plántulas de hortalizas en el estado Lara, Venezuela. Bioagro. 21(2): 117–124.
  6. Burbano-Orjuela, H. (2016). El suelo y su relación con los servicios ecosistémicos y la seguridad alimentaria. Revista de Ciencias Agrícolas. 33(2): 117–124. https://doi.org/10.22267/rcia.163302.58
  7. Centeri, C. (2022). Effects of grazing on water erosion, compaction and infiltration on grasslands. Hydrology. 9(2): 34. https://doi.org/10.3390/hydrology9020034
  8. Ciric, V.; Manojlovic, M.; Nesic, L.; Belic, M. (2012). Soil dry aggregate size distribution: effects of soil type and land use. Journal of Soil Science and Plant Nutrition. 12(4): 689–703. https://doi.org/10.4067/S0718-95162012005000025
  9. Cruz-Crespo, E.; Can-Chulim, Á.; Pineda-Pineda, J.; Moreno-Velázquez, D.; Aguilar-Benítez, G.; García-Paredes, J.D. (2019). Relación entre las propiedades físicas de mezclas de lombricompost con tezontle, piedra pómez y cascarilla de arroz. Agrociencia. 53(1): 1–12. https://agrociencia-colpos.org/index.php/agrociencia/article/view/1746/1746
  10. Fernandes, M.M.H.; Coelho, A.P.; Silva, M.F.; Bertonha, R.S.; Queiroz, R.F.; Furlani, C.E.A.; Fernandes, C. (2020). Estimation of soil penetration resistance with standardized moisture using modeling by artificial neural networks. Catena. 189: 104505. https://doi.org/10.1016/j.catena.2020.104505
  11. Gabriel, J.L.; García-González, I.; Quemada, M.; Martin-Lammerding, D.; Alonso-Ayuso, M.; Hontoria, C. (2021). Cover crops reduce soil resistance to penetration by preserving soil surface water content. Geoderma. 386: 114911. https://doi.org/10.1016/j.geoderma.2020.114911
  12. Gurmu, G. (2019). Soil organic matter and its role in soil health and crop productivity improvement. Forest Ecology and Management. 7(7): 475–483. https://doi.org/10.14662/ARJASR2019.147
  13. Instituto de Estudios Ambientales y Meteorología -IDEAM. (2017). Características climatológicas de ciudades principales y municipios turísticos. http://www.ideam.gov.co/documents/21021/21789/1sitios+turisticos2.pdf/cd4106e9-d608-4c29-91cc-16bee9151ddd
  14. Kranz, C.N.; McLaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. (2020). The effects of compost incorporation on soil physical properties in urban soils–A concise review. Journal of Environmental Management. 261: 110209. https://doi.org/10.1016/j.jenvman.2020.110209
  15. Li, Q.; Kang, Y.; Pei, X.; Zhang, X.; Li, X.; Lei, N.; He, X.; Wei, R.; Wang, B.; Yin, D.; Wang, S. (2024). Effects of modified organic material addition on soil and microbial communities in ecologically restored engineering slopes of the Qinghai-Tibetan plateau: A mesocosm study. Environmental Technology & Innovation. 34: 103612. https://doi.org/10.1016/j.eti.2024.103612
  16. Li, L.; Li, J.; Wei, C.; Yang, C.; Zhong, S. (2022). Effect of mechanized ridge tillage with rice-rape rotation on paddy soil structure. Agriculture. 12(12): 2147. https://doi.org/10.3390/agriculture12122147
  17. Liu, W.; Huang, X.; Feng, X.; Xie, Z. (2023). Compaction and bearing characteristics of untreated and treated lateritic soils with varying moisture content. Construction and Building Materials. 392: 131893. https://doi.org/10.1016/j.conbuildmat.2023.131893
  18. Maximillian, J.; Brusseau, M.L.; Glenn, E.P.; Matthias, A.D. (2019). Pollution and environmental perturbations in the global system. In: Brusseau, M.; Pepper, I.L.; Gerba, C. (eds.), Environmental and pollution science. pp. 457–476. 3rd ed. Academic Press. https://doi.org/10.1016/B978-0-12-814719-1.00025-2
  19. Menon, M.; Mawodza, T.; Rabbani, A.; Blaud, A.; Lair, G.J.; Babaei, M.; Kercheva, M.; Rousseva, S.; Banwart, S. (2020). Pore system characteristics of soil aggregates and their relevance to aggregate stability. Geoderma. 366: 114259. https://doi.org/10.1016/j.geoderma.2020.114259
  20. Miranda, G.A.P.; Araruna-Júnior, J.T.; Brocchi, E.A.; Wang, H. (2021). Humic substances reduce the erodibility of soils in mining areas. Journal of Cleaner Production. 279: 123700. https://doi.org/10.1016/j.jclepro.2020.123700
  21. Mitchell, K.; Beesley, L.; Šípek, V.; Trakal, L. (2022). Biochar and its potential to increase water, trace element, and nutrient retention in soils. In: Tsang, D.C.W.; Ok, Y.S. (eds.). Biochar in agriculture for achieving sustainable development goals. pp. 25–33. Academic Press. https://doi.org/10.1016/B978-0-323-85343-9.00008-2
  22. Montoya, E.M.F.; Gili, A.A.; Farrell, M.; Noellemeyer, E. (2018). Variación espacial de los contenidos hídricos del suelo en función del relieve. Ciencia del Suelo. 36(1): 173–181.
  23. Moraes, M.T.; Olbermann, F. J. R.; de Andrade- Bonetti, J.; Pilegi, L.R.; Costa, M.V.R.; Pacheco, V.; Rogers, C.D.; Guimarães, R.M.L. (2024). The impacts of cover crop mixes on the penetration resistance model of an Oxisol under no-tillage. Soil and Tillage Research. 242: 106138. https://doi.org/10.1016/j.still.2024.106138
  24. Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. (2016). Greenhouse gas emissions from soils–A review. Geochemistry. 76(3): 327–352. https://doi.org/10.1016/j.chemer.2016.04.002
  25. Olivares-Campos, M.A.; Hernández-Rodríguez, A.; Vences-Contreras, C.; Jáquez-Balderrama, J.L.; Ojeda-Barrios, D. (2012). Lombricomposta y composta de estiércol de ganado vacuno lechero como fertilizantes y mejoradores de suelo. Universidad y Ciencia. 28(1): 27–37.
  26. Padmavathiamma, P.K.; Li, L.Y.; Kumari, U. R. (2008). An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresource Technology. 99(6): 1672–1681. https://doi.org/10.1016/j.biortech.2007.04.028
  27. Pinto-Acero, Y.L.; Álvarez-Herrera, J.G.; Forero-Ulloa, F.E. (2016). Efecto de la labranza en la estabilidad estructural y resistencia a la penetración en un inceptisol sembrado con arracacha (Arracacia xanthorrhiza Bancroft) en Boyacá. Revista Colombiana de Ciencias Hortícolas. 10(1): 99–112. http://dx.doi.org/10.17584/rcch.2016v10i1.5049
  28. Pinzón-Gómez, L.P.; Álvarez-Herrera, J.G.; Mesa-Amézquita, A. (2016). Study of the spatial variability of moisture and compaction in soils with different plant covers. Agronomía Colombiana. 34(3): 355–363. https://doi.org/10.15446/agron.colomb.v34n3.59984
  29. Quintero, M.F.; Guzmán, J.M.; Valenzuela, J.L. (2012). Evaluación de sustratos alternativos para el cultivo de miniclavel (Dianthus caryophyllus L.). Revista Colombiana de Ciencias Hortícolas. 6(1): 76–87.
  30. Rabbi, S.M.; Warren, C.R.; Swarbrick, B.; Minasny, B.; McBratney, A.B.; Young, I.M. (2024). Microbial decomposition of organic matter and wetting–drying promotes aggregation in artificial soil but porosity increases only in wet-dry condition. Geoderma. 447: 116924. https://doi.org/10.1016/j.geoderma.2024.116924
  31. Roper, M.M.; Kerr, R.; Ward, P.R.; Micin, S.F.; Krishnamurthy, P. (2021). Changes in soil properties and crop performance on stubble-burned and cultivated water-repellent soils can take many years following reversion to no-till and stubble retention. Geoderma. 402: 115361. https://doi.org/10.1016/j.geoderma.2021.115361
  32. Silver, W.L.; Pérez, T.; Mayer, A.; Jones, A.R. (2021). The role of soil in the contribution of food and feed. Philosophical Transactions of the Royal Society B. 376: 20200181. https://doi.org/10.1098/rstb.2020.0181
  33. Souza, R.; Hartzell, S.; Ferraz, A.P.F.; Almeida, A.Q.; Lima, J.R.S.; Antonino, A.C.D.; Souza, E.S. (2021). Dynamics of soil penetration resistance in water-controlled environments. Soil and Tillage Research. 205: 104768. https://doi.org/10.1016/j.still.2020.104768
  34. Tiwari, J.; Ramanathan, A.L.; Bauddh, K.; Korstad, J. (2022). Humic substances: structure, function and benefits for agro-ecosystem–a review. Pedosphere. 13(2): 237–249. https://doi.org/10.1016/j.pedsph.2022.07.008
  35. Ullah, M.R.; Carrillo, Y.; Dijkstra, F.A. (2023). Relative contributions of fungi and bacteria to litter decomposition under low and high soil moisture in an Australian grassland. Applied Soil Ecology. 182: 104737. https://doi.org/10.1016/j.apsoil.2022.104737
  36. Velázquez-Duarte, J.A.; Rodríguez-Espínola, H.N.; Ferreira-Agüero, M.A.; Veja-Britez, G.D.; Lesmo Duarte, N.D.; Alvarenga-Serafini, J.D. (2016). Efecto de diferentes dosis de estiércol bovino en el cultivo orgánico de Stevia rebaudiana (Bertoni) Bertoni bajo sistema de riego por goteo. Investigación Agraria. 18(2): 101–110. https://doi.org/10.18004/investig.agrar.2016.diciembre.101-110
  37. Wahlström, E.M.; Kristensen, H.L.; Thomsen, I.K.; Labouriau, R.; Pulido-Moncada, M.; Nielsen, J.A.; Munkholm, L.J. (2021). Subsoil compaction effect on spatio-temporal root growth, reuse of biopores and crop yield of spring barley. European Journal of Agronomy. 123: 126225. https://doi.org/10.1016/j.eja.2020.126225
  38. Zamora, K.; Castro, L.; Wang, A.; Arauz, L.F.; Uribe, L. (2017). Uso potencial de lixiviados y tés de vermicompost en el control del ojo de gallo del cafeto Mycena citricolor. Agronomía Costarricense. 41(1): 33–51. https://doi.org/10.15517/rac.v41i1.29747
  39. Zanor, G.A.; López-Pérez, M.E.; Martínez-Yáñez, R.; Ramírez-Santoyo, L.F.; Gutiérrez-Vargas, S.; León-Galván, M.F. (2018). Mejoramiento de las propiedades físicas y químicas de un suelo agrícola mezclado con lombricompostas de dos efluentes de biodigestor. Ingeniería, Investigación y Tecnología. 19(4): 1–10. https://doi.org/10.22201/fi.25940732e.2018.19n4.036
  40. Zucco, G.; Brocca, L.; Moramarco, T.; Morbidelli, R. (2014). Influence of land use on soil moisture spatial–temporal variability and monitoring. Journal of Hydrology. 516: 193–199. https://doi.org/10.1016/j.jhydrol.2014.01.043

Downloads

Download data is not yet available.