contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 2 (2025): Revista de Ciencias Agrícolas - Second four, May - August 2025

Use of microorganisms with biofertilizer potential in basil (Ocimum basilicum L.) crop

DOI
https://doi.org/10.22267/rcia.20254202.260
Submitted
September 19, 2024
Published
2025-08-07

Abstract

Basil (Ocimum basilicum L.) cultivation in Colombia is highly versatile in the market and requires technologies to increase its competitiveness and sustainability. The use of biofertilizers represents an efficient strategy to improve productivity. This study aimed to evaluate the effect of inoculating arbuscular mycorrhizal fungi (AMF): Claroideoglomus etunicatum and Gigaspora rosea; and the biofertilizers of plant growth-promoting bacteria (PGPB): Rhizobium leguminosarum, Azospirillum brasilense, and Herbaspirillum frisingense, Fosfotal®, and monibac®, individually and in mixtures on crop production. The experiment was carried out on a commercial farm using a randomized complete block design, three replications, and nine treatments. Results show higher aerial fresh biomass with the inoculation of G. rosea (T3), followed by C. etunicatum (T4), and its mixture with PGPB2 (T8 and T7). There were positive correlations between T3 and G. rosea and plant length, leaf area index, number of stems, and phosphorus uptake. Treatments 4 and 7 showed positive relationships with C. etunicatum and fresh and dry biomass, chlorophyll, nitrogen uptake, and stomatal conductance. Treatments 2 and 8 showed affinity with Azospirillum brasilense, Herbaspirillum sp., and Rhizobium sp., and the physiological variables of intrinsic and extrinsic water use efficiency and the ratio of net photosynthesis to intercellular carbon. It is concluded that AMF, individually or in mixture with PGPB, promotes the growth and development of basil plants, leading to increased fresh biomass production. 

References

  1. Agronet. (2024). Área, Producción y Rendimiento Nacional por Cultivo: Albahaca. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
  2. ANALDEX. (2023). Las exportaciones de Colombia se impulsan con las hierbas aromáticas. https://www.analdex.org/2023/02/24/las-exportaciones-de-colombia-se-impulsan-con-las-hierbas-aromaticas/
  3. Baldani, J. I.; Reis, V. M.; Videira, S. S.; Boddey, L. H.; Baldani, V. L. D. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil. 384(1): 413–431. https://doi.org/10.1007/s11104-014-2186-6
  4. Battini, F.; Bernardi, R.; Turrini, A.; Agnolucci, M.; Giovannetti, M. (2016). Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. Mycorrhiza. 26(7): 699–707. https://doi.org/10.1007/s00572-016-0707-2
  5. Baum, C.; El-Tohamy, W.; Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae. 187: 131–141. https://doi.org/https://doi.org/10.1016/j.scienta.2015.03.002
  6. Becker, W. N.; Gerdemann, J. W. (1977). Glomus etunicatus sp. nov.(Mycorrhizal fungus, new taxa). Mycotaxon. 6: 1-29.
  7. Bharti, N.; Barnawal, D.; Wasnik, K.; Tewari, S. K.; Kalra, A. (2016). Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Applied Soil Ecology. 100: 211–225. https://doi.org/10.1016/j.apsoil.2016.01.003
  8. Cappellari, L.; Santoro, M. V.; Nievas, F.; Giordano, W.; Banchio, E. (2013). Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Applied Soil Ecology. 70: 16–22. https://doi.org/10.1016/j.apsoil.2013.04.001
  9. Chen, S.; Wang, S.; Sinnott, R. (2019). Parametric canonical correlation analysis. Proceedings of the International Conference on Cloud Computing Technology and Science. https://ieeexplore.ieee.org/document/8968840/authors#authors
  10. Copetta, A.; Lingua, G.; Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza. 16(7): 485–494. https://doi.org/10.1007/s00572-006-0065-6
  11. De Almeida Silva, B. E.; Da Cruz, R. M. S.; Miamoto, A.; Alberton, O.; Da Silva, C.; Dias-Arieira, C. R. (2021). Interaction between mycorrhizal fungi and Meloidogyne javanica on the growth and essential oil composition of basil (Ocimum basilicum). Journal of Crop Science. 15(3): 416–421. https://doi.org/10.21475/ajcs.21.15.03.p2926
  12. Emmanuel, O. C.; Babalola, O. O. (2020). Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiological Research. 239: 126569. https://doi.org/10.1016/j.micres.2020.126569
  13. Filip, S. (2017). Basil (Ocimum basilicum L.) a source of valuable phytonutrients. Int. J. Clin. Nutr. Diet. 3: 118. https://doi.org/10.15344/2456-8171/2017/118
  14. Gerdemann, J. W.; Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society. 46(2): 235–244. https://doi.org/10.1016/s0007-1536(63)80079-0
  15. Hazzoumi, Z.; Moustakime, Y.; hassan Elharchli, E.; Joutei, K. A. (2015). Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chemical and Biological Technologies in Agriculture. 2: 1–11. https://doi.org/10.1186/s40538-015-0035-3
  16. Khalediyan, N.; Weisany, W.; Schenk, P. M. (2021). Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis. Industrial Crops and Products. 160: 113163. https://doi.org/10.1016/j.indcrop.2020.113163
  17. Kisa, D.; İmamoğlu, R.; Genç, N.; Şahin, S.; Qayyum, M. A.; Elmastaş, M. (2021). The interactive effect of aromatic amino acid composition on the accumulation of phenolic compounds and the expression of biosynthesis-related genes in Ocimum basilicum. Physiology and Molecular Biology of Plants. 27(9): 2057–2069. https://doi.org/10.1007/s12298-021-01068-1
  18. Makri, O.; Kintzios, S. (2008). Ocimum sp.(basil): Botany, cultivation, pharmaceutical properties, and biotechnology. Journal of Herbs, Spices & Medicinal Plants. 13(3): 123–150. https://doi.org/10.1300/J044v13n03_10
  19. Moreno-Galvan, A. E.; Rojas Tapias, D. F.; Bonilla B, R. R. (2011). Sequential statistical design application in identification of Azotobacter chroococcum AC1 nutritional sources. Revista Corpoica - Ciencia y Tecnología Agropecuaria. 12(2): 151–158.
  20. Morton, J. B.; Bentivenga, S. P.; Bever, J. D. (1995). Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Canadian Journal Botany. 73(1): S25–S32. https://doi.org/10.1139/b95-221
  21. Nadeem, S. M.; Khan, M. Y.; Waqas, M. R.; Binyamin, R.; Akhtar, S.; Zahir, Z. A. (2017). Arbuscular Mycorrhizas: An Overview. In: Wu Q. S. (ed.). Arbuscular Mycorrhizas and Stress Tolerance of Plants. pp. 1–24. 1 edition. Springer Singapore. 330p.
  22. Nicolson, T. H.; Schenck, N. C. (1979). Endogonaceous mycorrhizal endophytes in Florida. Mycologia. 71(1): 178–198.
  23. Olanrewaju, O. S.; Glick, B. R.; Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology. 33(11): 197. https://doi.org/10.1007/s11274-017-2364-9
  24. Palermo, T. B.; Cappellari, L. D. R.; Palermo, J. S.; Giordano, W.; Banchio, E. (2024). Simultaneous Impact of Rhizobacteria Inoculation and Leaf-Chewing Insect Herbivory on Essential Oil Production and VOC Emissions in Ocimum basilicum. Plants. 13(7): 932. https://doi.org/10.3390/plants13070932
  25. R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/
  26. Rad, A. K.; Zarei, M.; Astaikina, A.; Streletskii, R.; Etesami, H. (2022). Effects of microbial inoculants on growth, yield, and fruit quality under stress conditions. In: Seymen, M.; Kurtar, E. S.; Erdinc, C. Kumar, A. (Eds.). Sustainable Horticulture. (pp. 1–38). Academic Press. 500p.
  27. Rasouli-Sadaghiani, M.; Hassani, A.; Barin, M.; Rezaee Danesh, Y.; Sefidkon, F. (2010). Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. Journal of Medicinal Plants Research. 4(21): 2222–2228.
  28. Schüßler, A.; Walker, C. (2011). Evolution of the Plant-Symbiotic Fungal Phylum, Glomeromycota BT. In: Pöggeler, S.; Wöstemeyer, J. (eds.). Evolution of Fungi and Fungal-Like Organisms. pp. 163–185. 1 edition. Springer Berlin Heidelberg. 322p.
  29. Singh, R.; Soni, S. K.; Patel, R. P.; Kalra, A. (2013). Technology for improving essential oil yield of Ocimum basilicum L. (sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Industrial Crops and Products. 45: 335–342. https://doi.org/10.1016/j.indcrop.2013.01.003
  30. Tahami, M. K.; Jahan, M.; Khalilzadeh, H.; Mehdizadeh, M. (2017). Plant growth promoting rhizobacteria in an ecological cropping system: A study on basil (Ocimum basilicum L.) essential oil production. Industrial Crops and Products. 107: 97–104. https://doi.org/10.1016/j.indcrop.2017.05.020
  31. Toussaint, J. P.; Kraml, M.; Nell, M.; Smith, S. E.; Smith, F. A.; Steinkellner, S.; Schmiderer, C.; Vierheilig, H.; Novak, J. (2008). Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f.sp. basilici. Plant Pathology. 57(6): 1109–1116. https://doi.org/10.1111/j.1365-3059.2008.01895.x
  32. Vincent, M. J. (1970). A manual for the practical study of root-nodule bacteria. Vol 15. Oxford and Edinburgh: International Biological Program - IBP Handbood. 164 p.
  33. Wilches-Ortiz, W. A.; Ramírez Gómez, M. M.; Méndez Reyes, L. M.; Pérez Moncada, U. A.; Serralde Ordoñez, D. P.; Peñaranda Rolon, A. M. (2022). Uso de Micorrizas Arbusculares en dos variedades de caña de azúcar para producción de panela en Suaita-Santander, Colombia. Siembra. 9: 1–14. https://doi.org/10.29166/siembra.v9i1.3802
  34. Wu, Y.; Chen, C.; Wang, G. (2024). Inoculation with arbuscular mycorrhizal fungi improves plant biomass and nitrogen and phosphorus nutrients: a meta-analysis. BMC Plant Biology. 24(1): 960. https://doi.org/10.1186/s12870-024-05638-9
  35. Yilmaz, A.; Karik, Ü. (2022). AMF and PGPR enhance yield and secondary metabolite profile of basil (Ocimum basilicum L.). Industrial Crops and Products. 176: 114327. https://doi.org/10.1016/j.indcrop.2021.114327
  36. Zulueta-Rodríguez, R.; Valerio-Landa, S. D.; Murillo-Amador, B.; Lara-Capistrán, L.; Reyes-Pérez, J. J.; Hernández-Montiel, L. G. (2016). Influence of arbuscular mycorrhizal fungi on plant growth and physiological changes of sweet basil under greenhouse. Revista Mexicana de Ciencias Agrícolas. 17: 3557–3568.

Downloads

Download data is not yet available.