contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 41 No. 3 (2024): Revista de Ciencias Agrícolas - Tercer cuatrimestre, Septiembre - Diciembre 2024

Phenology, mass accumulation patterns and growing degree days in common bean: Fenología, patrones de acumulación de masa y grados día de crecimiento en fríjol común

DOI
https://doi.org/10.22267/rcia.20244103.239
Submitted
October 4, 2024
Published
2024-12-24

Abstract

The common bean represents approximately half of the global production of leguminous grains. Brazil is the world's largest producer, as it is a primary source of protein in the population's diet. This research aimed to relate the phenological stages of the common bean under greenhouse conditions and establish a connection between mass accumulation patterns and the environment, specifically temperature, by estimating Growing Degree Days (GDD) during two periods with different temperatures throughout the year. Once a week, after seed germination, plants were collected and weighed to quantify fresh and dry mass to determine biomass allocation within the plant. This procedure was carried out until the plant’s growth cycle was completed. The environment was systematically monitored using a thermo-hygrometer. GDD accumulation was estimated for the phenological stages from V0 to R8 during two evaluation periods. Fresh and dry mass accumulation was fitted to logistic models that generated sigmoidal-type curves. It was observed that the bean plants accumulated 803.5 GDD in the first period and 808.6 GDD in the second period, from V0 to R8, with different fresh and dry mass accumulation patterns in various plant organs. This demonstrates the relationship between temperature and the growth and development of the bean plant and can provide important information for selecting the optimal planting time for this significant crop.

References

  1. Alfaro, E. J.; Gershunov, A.; Cayan, D. (2006). Prediction of summer maximum and minimum temperature over the central and western United States: The roles of soil moisture and sea surface temperature. Journal of Climate. 19(8): 1407–1421. https://doi.org/10.1175/JCLI3665.1
  2. Anandhi, A. (2016). Growing degree days – Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecological Indicators. 61: 149–158. https://doi.org/10.1016/j.ecolind.2015.08.023
  3. Archontoulis, S. V.; Miguez, F. E. (2015). Nonlinear regression models and applications in agricultural research. Agronomy Journal. 107(2): 786–798. https://doi.org/10.2134/agronj2012.0506
  4. Asseng, S.; Foster, I.; Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology. 17(2): 997–1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x
  5. Ávila, L. F.; de Mello, C. R.; Yanagi, S. de N. M.; Neto, O. B. S. (2014). Tendências de temperaturas mínimas e máximas do ar no Estado de Minas Gerais. Pesquisa Agropecuaria Brasileira. 49(4): 247–256. https://doi.org/10.1590/S0100-204X2014000400002
  6. Barrios-Gómez, E. J.; López-Castañeda, C. (2009). Temperatura base y tasa de extensión foliar en frijol. Agrociencia. 43(1): 29–35.
  7. Câmara, C. R. S.; Urrea, C. A.; Schlegel, V. (2013). Pinto beans (Phaseolus vulgaris l.) as a functional food: Implications on human health. Agriculture (Switzerland). 3(1): 90–111. https://doi.org/10.3390/agriculture3010090
  8. Cavalcante, A. G.; Lemos, L. B.; Meirelles, F. C.; Cavalcante, A. C. P.; de Aquino, L. A. (2020). Thermal sum and phenological descriptions of growth stages of the common bean according to the BBCH scale. Annals of Applied Biology. 176(3): 342–349. https://doi.org/10.1111/aab.12571
  9. Colauto, N.; Silvia, C.; Marur, C.; Dos Santos, M.; Gomes, J. (2006). Maturation curves and degree-days accumulation for fruits of “folha murcha” orange trees. Scientia Agricola. 63(3): 219–225. https://doi.org/10.1590/S0103-90162006000300002
  10. Dhillon, J. S.; Figueiredo, B. M.; Eickhoff, E. M.; Raun, W. R. (2020). Applied use of growing degree days to refine optimum times for nitrogen stress sensing in winter wheat. Agronomy Journal. 112(1): 537–549. https://doi.org/10.1002/agj2.20007
  11. De Oliveira, L. F. C.; Oliveira, M. D. C.; Wendland, A., Heinemann, A. B.; Guimarães, C. M.; Ferreira, E. D. B.; Quintela, E. D.; Barbosa, F. R.; Carvalho, M. da C. S.; Lobo Junior, M.; Silveira, P. M.; da Silva, S. C. (2018). Conhecendo a fenologia do feijoeiro e seus aspectos fitotécnicos. 2ed. rev. e ampl. Brasília, DF : Embrapa. 61 p.
  12. Fernandes, T. J.; Pereira, A. A.; Muniz, J. A.; Savian, T. V. (2014). Selection of nonlinear models for the description of the growth curves of coffee fruit. Coffee Science. 9(2): 207–215. https://doi.org/10.25186/cs.v9i2.618
  13. Ferreira, C.; Freitas, J. (2021). Arroz e feijão tradição e segurança alimentar. 1ed. Brasília, DF: Embrapa. 164 p.
  14. Guimarães, B. (2021). Quatro novas cultivares de feijão para Minas Gerais são recomendadas pela Epamig, UFV, UFLA e Embrapa. https://acortar.link/Wa1xT5
  15. Hatfield, J. L.; Boote, K. J.; Kimball, B. A., Ziska, L. H.; Izaurralde, R. C.; Ort, D.; Thomson, A. M.; Wolfe, D. (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal. 103(2): 351–370. https://doi.org/10.2134/agronj2010.0303
  16. Hatfield, J. L.; Dold, C. (2019). Water-use efficiency: Advances and challenges in a changing climate. Frontiers in Plant Science. 10(February): 1–14. https://doi.org/10.3389/fpls.2019.00103
  17. Hatfield, J.; Prueger, J. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 10: 4–10. https://doi.org/10.1016/j.wace.2015.08.001
  18. Heinemann, A. B.; Costa-Neto, G.; Fritsche-Neto, R.; da Matta, D. H.; Fernandes, I. K. (2022). Enviromic prediction is useful to define the limits of climate adaptation: A case study of common bean in Brazil. Field Crops Research. 286: 108628. https://doi.org/10.1016/j.fcr.2022.108628
  19. Heinemann, A. B.; Ramirez-Villegas, J.; Souza, T. L. P. O.; Didonet, A. D.; di Stefano, J. G.; Boote, K. J.; Jarvis, A. (2016). Drought impact on rainfed common bean production areas in Brazil. Agricultural and Forest Meteorology. 225: 57–74. https://doi.org/10.1016/j.agrformet.2016.05.010
  20. Hoyos, D.; Morales, J. G.; Chavarría, H.; Montoya, A. P.; Correa, G.; Jaramillo, C. (2012). Acumulación de Grados-Día en un Cultivo de Pepino (Cucumis sativus L.) en un Modelo de Producción Aeropónico. Phenology, Base Temperature, Physiological Time, Climate. 65(1): 6389–6398.
  21. Hunt, R. (2017). Growth Analysis, Individual Plants. In: Thomas, B.; Murray, B. G.; Murphy, D. J. Encyclopedia of Applied Plant Sciences. pp. 421–429. 2 ed. Vol. 1. San Diego : Academic Press. 549p. https://doi.org/10.1016/B978-0-12-394807-6.00226-4
  22. Ishaq, A.; Pasternak, R.; Wessollek, C. (2017). Evaluation of crop development stages with TerraSAR-X backscatter signatures (2010-12) by using Growing Degree Days. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX. 10421: 410-420. https://doi.org/10.1117/12.2278326
  23. Knowles, N.; Dettinger, M. D.; Cayan, D. R. (2006). Trends in snowfall versus rainfall in the western United States. Journal of Climate. 19(18): 4545–4559. https://doi.org/10.1175/JCLI3850.1
  24. Lambers, H.; Oliveira, R. S. (2019). Plant Physiological Ecology. Switzerland: Springer International Publishing. 736p. https://doi.org/10.1007/978-3-030-29639-1
  25. Leguízamo-Medina, M. F.; Pinzón-Sandoval, E. H.; Balaguera-López, H. E. (2022). Phenology analysis growing and degree days of flower bud growth in three Dianthus caryophyllus L. varieties under greenhouse conditions. Revista Colombiana de Ciencias Hortícolas. 16(3): 1–13. https://doi.org/10.17584/rcch.2022v16i3.15296
  26. Lima Filho, A. F.; Coelho Filho, M. A.; Heinemann, A. B. (2013). Determinação de épocas de semeadura do feijão caupi no Recôncavo Baiano através do modelo CROPGRO. Revista Brasileira de Engenharia Agrícola e Ambiental. 17(12): 1294–1300. https://doi.org/10.1590/s1415-43662013001200007
  27. Liu, Y.; Su, L.; Wang, Q.; Zhang, J.; Shan, Y.; Deng, M. (2020). Comprehensive and quantitative analysis of growth characteristics of winter wheat in China based on growing degree days. Advances in Agronomy. 159: 237-273. https://doi.org/10.1016/bs.agron.2019.07.007
  28. López, M. A.; Flórez, V. J.; Salazar, M. R. (2010). Modelo de aparición de nudos en clavel (Dianthus caryophyllus L.) cv. Delphi cultivado en sustratos. Agronomia Colombiana. 28(1): 47–54.
  29. Lucio, A. D.; Nunes, L. F.; Rego, F. (2016). Nonlinear regression and plot size to estimate green beans production. Horticultura Brasileira. 34(4): 507–513. https://doi.org/10.1590/s0102-053620160409
  30. R Core Team. (2022). R: A language and environment for statistical computing. https://www.r-project.org/
  31. Romero-Cuervo, W. A.; Pinzon-Sandoval, E. H.; Luis-Ayala, M. A. (2022). Phenology and growth flower of Dianthus caryophyllus L. cv. ‘MOON LIGHT’ under greenhouse. Revista de Ciencias Agrícolas. 39(1): 7–15. https://doi.org/10.22267/rcia.223901.167
  32. Salazar-Gutierrez, M. R.; Johnson, J.; Chaves-Cordoba, B.; Hoogenboom, G. (2013). Relationship of base temperature to development of winter wheat. International Journal of Plant Production. 7(4): 741–762. https://doi.org/10.22069/ijpp.2013.1267
  33. Sikder, S. (2009). Accumulated Heat Unit and Phenology of Wheat Cultivars as Influenced by Late Sowing Heat Stress Condition. Journal of Agriculture & Rural Development. 7(1&2): 57–64. https://doi.org/10.3329/jard.v7i1.4422
  34. Souza, P. D. O. D.; Sousa, A. D.; Sampaio, L. S. (2013). Soybean development and thermal requirement under the climatic conditions of Paragominas, Pará state, Brazil. Revista de Ciências Agrarias - Amazon Journal of Agricultural and Environmental Sciences. 56(4): 371–375. https://doi.org/10.4322/rca.2013.055
  35. Szabelska, A.; Siatkowski, M.; Goszczurna, T.; Zyprych, J. (2010). Comparison of growth models in package R. Nauka Przyroda Technologie. 4(4): 1–9.
  36. Taiz, L.; Zeiger, E.; Moller, I.; Murphy, A. (2017). Fisiologia e Desenvolvimento Vegetal. 6 ed. Porto Alegre: Artmed. 839p.
  37. Welch, J. R.; Vincent, J. R.; Auffhammer, M.; Moya, P. F.; Dobermann, A.; Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences of the United States of America. 107(33): 14562–14567. https://doi.org/10.1073/pnas.1001222107
  38. Yang, S.; Logan, J.; Coffey, D. L. (1995). Mathematical formulae for calculating the base temperature for growing degree days. Agricultural and Forest Meteorology. 74(1–2): 61–74. https://doi.org/10.1016/0168-1923(94)02185-M

Downloads

Download data is not yet available.