contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 2 (2025): Revista de Ciencias Agrícolas - Second four, May - August 2025

Assessment of pea seed quality in the production zone of the Nariño department

DOI
https://doi.org/10.22267/rcia.20254202.266
Submitted
October 4, 2024
Published
2025-08-29

Abstract

In Colombia, the largest pea production occurs in the south of the department of Nariño. Seed is the most important input for cultivation; however, practices used for its selection and storage can reduce its quality and viability. This research analyzed the physical, physiological, and sanitary quality of pea seeds from two sources: producers and those produced according to Colombian regulations (wineryhouse). Regarding quality variables, 58% of the samples in producer seed presented rough, whitish, or spotted grains, plant residues, and inert material. Their germination was lower than required by regulations; 75% presented a humidity percentage higher than recommended (14%). Environmental and phytopathogenic fungi were isolated, from which 15 consensus sequences of the ITS region of rRNA were obtained, allowing the identification of Alternaria sp., Botrytis sp., Stemphylium sp., Arthrinium sp., Dydimella sp., Parastagonospora sp., Penicillium sp., Verrucoconiothyrium sp., Cladosporium sp., Trametes versicolor, and Epicoccum sp. No presence of Pseudomonas spp. was detected in the seed. Potyvirus was present in 5 of the 24 samples evaluated. There were no impurities or atypical grains in the seed from the winery; germination was greater than 80% in the 24 months of evaluation, and humidity met the specifications for certified seed. The frequency of fungi and bacteria was lower than in the producers' conditions, although Monilia sp. and Penicillium sp. were found. The seed from producers has low quality, while warehouse seed complies with Colombian regulations, highlighting the importance of improving production and storage conditions by producers.

References

  1. Abidin, N.; Barbetti, M. J.; You, M. P.; Jones, R. A. (2025). Seed transmission of turnip mosaic virus demonstrated unequivocally in a Brassica species. Plant Disease. 109(6). https://doi.org/10.1094/PDIS-09-24-1981-SC
  2. Altschul, S.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology. 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Arévalos, A.; Redondo, E.; Insfrán, A. (2021). Daños mecánicos asociados al procesamiento de granos y semillas: una revisión de la literatura. Latin American Journal of Applied Engineering. 4(1): 1-12. https://doi.org/10.69681/lajae.v4i1.17
  4. Barnett, H. L.; Hunter, B. B. (1998). Illustrated genera of imperfect fungi. 4th ed. Saint Paul: American Phytopathological Society. 240 p.
  5. Brauna-Morževska, E.; Bankina, B.; Kaņeps, J. (2019). Botrytis genus fungi as causal agents of legume diseases: A review. Agricultural Sciences. 2: 63-69. https://doi.org/10.22616/rrd.25.2019.050
  6. Cadena, A. M.; Riascos, M. E.; Castro, A.; Delgado, A. M.; Zambrano, G.; Vásquez, A. R. (2022). Impacto de las variedades Obonuco Andina y San Isidro en el departamento de Nariño, Colombia. Revista de Investigaciones Altoandinas - Journal of High Andean Research. 24(4): 257-266. https://doi.org/10.18271/ria.2022.452
  7. Cadena, M.; Yepes, D.; Merchancano, J. (2020). Manual técnico para la producción artesanal de semilla de arveja. 1st ed. Pasto, Colombia: AGROSAVIA. 82p. https://doi.org/10.21930/agrosavia.manual.7403459
  8. Casanova, L.; Solarte, J.; Checa Coral, O. (2012). Evaluation of four densities of sowing in seven promissory lines of bush pea (Pisum sativum L.). Revista de Ciencias Agrícolas. 29(2): 129–140. https://revistas.udenar.edu.co/index.php/rfacia/article/view/462
  9. Checa Coral, O. E.; Rodríguez, D. M.; Ruiz, M. H.; Muriel, J. E. (2022). La Arveja: Investigación y Tecnología en el Sur de Colombia. 1st edition. San Juan de Pasto: Editorial Universidad de Nariño. 220p.
  10. Christensen, C. M.; Kaufmann, H. H. (1969). Grain Storage: The Role of Fungi in Quality Loss. NED-New edition. Mankato: University of Minnesota Press. 172 p.
  11. Coutts, B. A.; Prince, R. T.; Jones, R. A. C. (2008). Further studies on Pea seed-borne mosaic virus in cool-season crop legumes: Responses to infection and seed quality defects. Australian Journal of Agricultural Research. 59(12): 1130–1145. https://doi.org/10.1071/AR08113
  12. Congdon, B. S.; Coutts, B. A.; Renton, M.; Banovic, M.; Jones, R. A. C. (2016). Pea seed-borne mosaic virus in field pea: Widespread infection, genetic diversity, and resistance gene effectiveness. Plant Disease. 100(12): 2475–2482. https://doi.org/10.1094/PDIS-05-16-0670-RE
  13. Dell’Olmo, E.; Tiberini, A.; Sigillo, L. (2023). Leguminous seedborne pathogens: Seed health and sustainable crop management. Plants. 12(10): 2040. https://doi.org/10.3390/plants12102040
  14. Grünwald, N. J.; Chen, W.; Larsen, R. C. (2004). Pea diseases and their management. In: Naqvi, S.A.M.H. (ed.). Diseases of Fruits and Vegetables: Volume II. pp. 301.331. Dordrecht: Springer. 686p. https://doi.org/10.1007/1-4020-2607-2_9
  15. McDonald, M. B.; Nelson, C. J. (Eds.). (1986). Physiology of seed deterioration. Madison: Crop Science Society of Americ. 123 p. https://doi.org/10.2135/cssaspecpub11
  16. Instituto Colombiano Agropecuario-ICA (2024). Actualizacion norma general de semillas en Colombia- Resolución Nº 00011340 subgerencia de protección vegetal dirección técnica de semillas. https://acosemillas.org/wp-content/uploads/2022/02/Alfonso-Alberto-Rosero.pdf
  17. International Seed Testing Association-ICA. (2024a). 7‑005: Detection of Ascochyta pisi in Pisum sativum (pea) seed. In International Rules for Seed Testing. https://www.seedtest.org/api/rm/K322HTA4C9AU63S/7-005-detection-of-ascochyta-
  18. International Seed Testing Association-ICA. (2024b). 7‑029: Detection of Pseudomonas syringae pv. pisi in Pisum sativum (pea) seed. In International Rules for Seed Testing. https://www.seedtest.org/api/rm/9T45H5P756TRTWQ/7-029-detection-of-pseudomonas-syringae-pv-pisi-in-8.pdf
  19. Janse, J. (2006). Phytobacteriology principles and practice. Cambridge: CABI. 360 p.
  20. Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; Ashton, B.; Meintjes, P.; Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12): 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
  21. Koyyappurath, S.; Atuahiva, T.; Le Guen, R.; Batina, H.; Le Squin, S.; Gautheron, N.; Edel Hermann, V.; Peribe, J.; Jahiel M.; Steinberg, C.; Liew, E. C. Y.; Alabouvette, C.; Besse, P.; Dron, M., Sache, I.; Laval, V.; Grisoni, M. (2016) Fusarium oxysporum f. sp. radicis‐vanillae is the causal agent of root and stem rot of vanilla. Plant Pathology. 65(4): 612-625. http://doi.org/10.1111/ppa.12445
  22. Martín, I.; Gálvez, L.; Guasch, L.; Palmero, D. (2022). Fungal Pathogens and Seed Storage in the Dry State. Plants. 11(22):3167. https://doi.org/10.3390/plants11223167
  23. Miranda, V.; Ayala, L. (2013). Determinación de la calidad fisiológica de semillas de arveja Pisum sativum L. por medio de diferentes metodologías. Investigación Agraria. 6(1): 5-9.
  24. Moparthi, S.; Parikh, L. P.; Gunnink Troth, E. E.; Burrows, M. E. (2023). Identification and Prevalence of Seedborne Botrytis spp. in Dry Pea, Lentil, and Chickpea in Montana. Plant Disease. 107(2): 382–392. https://doi.org/10.1094/PDIS-05-22-1236-RE
  25. Pabón-Villalobos, J.; Castaño-Zapata, J. (2012). Identificación de hongos y bacterias en granos de arveja (Pisum sativum Linneo). Agronomía. 20(1): 26-37.
  26. Patiño-Moscoso, M. A.; Flórez-Gómez, D. L.; Hernández-Nopsa, J. F.; Castro-Jiménez, A.; González-Almario, C.; Forero-Camacho, C. A.; Vargas-Ramírez, D. N.; Cañar-Serna, D. Y.; Méndez-Molano, E.; Rodríguez-Izquierdo, G. A.; Jiménez-Sabogal, H. R.; Valencia-Sánchez, J. S.; Ramírez-Durán, J.; Osorio-Guerrero, K. V.; Sarmiento-Moreno, L. F.; Medina-Mérida, M. J.; Rodríguez-Mosquera, M. E.; Rivera-Rojas, M.; Pulido-Castro, S. X.; Lasso-Paredes, Z. L. (2022). Lineamientos generales para la formulación, diseño y establecimiento de Bancos Locales de Semillas (BLS). Mosquera: AGROSAVIA. 118 p. https://doi.org/10.21930/agrosavia.manual.7405842
  27. Dadlani, M.; Yadava, D. (Ed). (2023). Seed science and technology. Sprynger. 1st edition. Singapore: Springer. 440p. https://doi.org/10.1007/978-981-19-5888-5
  28. Realpe, L. K. (2017). Capacitación en producción de semilla de arveja de calidad al pequeño productor, en tres municipios productores de arveja en Nariño. https://sired.udenar.edu.co/14268/1/14268.pdf
  29. Red de Información y Comunicación del sector Agropecuario Colombiano-AGRONET. (2022). Reporte: Área, producción y rendimiento nacional por cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
  30. Ragukula, K.; Makandar, R. (2023). Cladosporium cladosporioides causes leaf blight on garden peas in Telangana, India. Plant Disease. 107(7). https://doi.org/10.1094/PDIS-09-22-2175-PDN
  31. Roberts, I. M.; Wang, D.; Thomas, C. L.; Maule, A. J. (2003). Pea seed-borne mosaic virus seed transmission exploits novel symplastic pathways to infect the pea embryo and is, in part, dependent upon chance. Protoplasma. 222: 31–43. https://doi.org/10.1007/s00709-003-0015-5
  32. Roberts, S. J.; Ridout, M. S.; Peach, L.; Brough, J. (1996). Transmission of pea bacterial blight (Pseudomonas syringae pv. pisi) from seed to seedling: Effects of inoculum dose, inoculation method, temperature and soil moisture. Journal of Applied Bacteriology. 81(1): 65–72. https://doi.org/10.1111/j.1365-2672.1996.tb03298.x
  33. Secretaría de Agricultura, Ganadería, Desarrollo Rural Pesca y Alimentación- SAGARPA. (2017). Almacenamiento y conservación de granos y semillas. https://somossemilla.org/wp-content/uploads/2017/06/Almacenamiento-de-semillas.pdf
  34. Shahbazi, F.; Valizade, S.; Dowlatshah, A. (2017). Mechanical damage to green and red lentil seeds. Food Science & Nutrition. 5(4): 943-947. https://doi.org/10.1002/fsn3.480
  35. Shahbazi, F. (2017). Crushing susceptibility of vetch seeds under impact loading. Cercetări Agronomice în Moldova. 4(172): 5-16.
  36. Shahbazi, F.; Saffar, A.; Analooei, M. (2011). Mechanical damage to pinto beans as affected by moisture content and impact energy. Agricultural Engineering International: CIGR Journal. 13(2): 1-8. https://cigrjournal.org/index.php/Ejounral/article/view/1867/1473
  37. Tamayo, P. (2000). Enfermedades del cultivo de la arveja en Colombia: Guía de reconocimiento y control, Colombia. Río Negro, Colombia: AGROSAVIA. 48 p.
  38. Tiwari, A. (1997). Pea: A new host record for Stemphylium sarciniforme wilt from India. Indian Phytopath. 50(1): 147-150.
  39. Torrado, J. M.; Castellanos, L.; Céspedes, N. (2020). Evaluation of biological alternatives for the control of Ascochyta spp. in the pea crop, Pamplona, Norte de Santander. Revista Ambiental Agua, Aire y Suelo. 1:1-9. https://doi.org/10.24054/aaas.v11i1.353
  40. Valencia, A.; Timaná, Ch.; Checa, O. (2012). Evaluación de 20 líneas de arveja (Pisum sativum L.) y su reacción al complejo de Ascochyta. Revista de Ciencias Agrícolas. 29(2): 39-52.
  41. Verma, A. K.; Agrawal, K. (2018). Location and histopathology of seed-borne bacterial pathogen Pseudomonas syringae pv. pisi carried by pea seeds. Journal of Applied Biology and Biotechnology. 6(1): 20-22. https://doi.org/10.7324/JABB.2018.60104
  42. Verma, A. K.; Meena, L. (2021). Changes in pea seeds viability due to infection of bacterial pathogen Pseudomonas syringae pv. pisi causing bacterial blight of pea. World Journal of Pharmaceutical Research. 10(8): 997–1005.
  43. Youssef, M. A. A.; Aly, A. Z.; Tohamy, M. R. A.; Ghonim, M. I. (2018). Studies on fungi associated with pea seeds and their effect on germination and some seed characters. Zagazig Journal of Agricultural Research. 45(4): 1291-1308. https://doi.org/10.21608/zjar.2018.48574
  44. White, T. J.; Bruns, T.; Lee, S. J. W. T.; Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A.; Gelfand, D. H.; Sninsky, J. J.; White, T.J. (Eds.). PCR protocols: a guide to methods and applications. pp. 315-322. Academic Press Inc.

Downloads

Download data is not yet available.