contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 2 (2025): Revista de Ciencias Agrícolas - Second four, May - August 2025

Soil organic carbon dynamics in land-use systems in the tropical dry forest of Colombia

DOI
https://doi.org/10.22267/rcia.20254202.261
Submitted
October 16, 2024
Published
2025-08-15

Abstract

Soil organic carbon (SOC) is a crucial reservoir that facilitates climate change mitigation through its sequestration. The SOC stock was estimated in the top 30 cm in the predominant land use systems (LUS) (agriculture, grasslands, and forestry – forestry plantations, gallery forests, and natural regeneration) in the Centro Universitario Regional del Norte (CURDN), located in the dry zone of northern Tolima, Colombia. The bulk density (BD) and SOC concentration were estimated at this depth in a sampling. Information on the latter variable was also taken from a study in the same area in 2007. The effects of possible changes in land use on SOC stock between 2007 and 2021 were estimated, calculating a change rate between the two years. A significant effect of land use on the variables analyzed was found: agriculture presented the highest BD and lowest SOC concentration, while livestock production reached the highest SOC concentration and stock (1.45% and 63.2 Mg C/ha, respectively). The SOC stock, after 14 years, increased in all LUS, mostly in livestock production (150%), resulting in a SOC capture rate of 3.0 Mg/ha/year. Changing livestock to other uses can cause emissions of up to 60.6 Mg CO2/ha and up to 9.3 Gg CO2 in the total area of the CURDN. These results are the basis for LUS management for climate change mitigation through SOC conservation and sequestration.

References

  1. Andrade, H.J.; Brook, R.; Ibrahim, M. (2008). Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant and Soil. 308: 11-22. https://doi.org/10.1007/s11104-008-9600-x
  2. Andrade, H.J.; Segura, M.A.; Canal-Daza, D.S. (2022). Conservation of Soil Organic Carbon in the National Park Santuario de Fauna y Flora Iguaque, Boyacá-Colombia. Forests. 13(8): 1275. https://doi.org/10.3390/f13081275
  3. Andrade, H.J.; Segura, M.A.; Sierra, E.; Canal, D.S.; Muñoz, J.; Mora, J.R.; Rodríguez, P.; Guauque, D.E.; Barreto, L.S.; Guio, A.J.; Acuña, L.M.; Varón, P.T.; Martínez, L.; Medina, E.L.; Barragán, M.A.; Marín, M.; Siachoque, R.S.; Gutiérrez, J.F.; Izquierdo, O. (2018). Servicios ecosistémicos aportados por sistemas de producción en laderas de la cuenca media del río Combeima (Departamento del Tolima, Colombia): Un aporte hídrico a la gestión del recurso hídrico. 1° ed. Ibagué: Sello Editorial Universidad del Tolima. 192pp.
  4. Andrade-Castañeda, H.J.; Segura-Madrigal, M.A.; Rojas-Patiño, A.S. (2016). Carbono orgánico del suelo en bosques riparios, arrozales y pasturas en Piedras, Tolima, Colombia. Agronomía Mesoamericana. 27(2): 233-241. https://doi.org/10.15517/am.v27i2.24359
  5. Arshad, M.; Khedher, K.M.; Ayed, H.; Mouldi, A.; Moghanm, F.S.; El Ouni, M.H.; Benkala, N.; Laatar, E.; Bilal, M.; Abdel Zaher, M. (2020). Effects of land use and cultivation histories on the distribution of soil organic carbon stocks in the area of the Northern Nile Delta in Egypt. Carbon Management. 11(4): 341-354. https://doi.org/10.1080/17583004.2020.1790241
  6. Ayala-Aragón, O. R.; Almanza-López, M. V. (2021). Almacenamiento de carbono orgánico en suelos agrícolas de la zona Intersalar Potosino en diferentes tipos de uso. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales. 8(2): 7-19. https://doi.org/10.53287/pokx3560jc91k
  7. Ayarza, M.; Rao, I.; Vilela, L.; Lascano, C.; Vera-Infanzón, R. (2022). Soil carbon accumulation in crop-livestock systems in acid soil savannas of South America: A review. Advances in Agronomy. 173: 163-226. https://doi.org/10.1016/bs.agron.2022.02.003
  8. Bolívar Gamboa, A.; Camacho Hilarión, C.A.; Ordoñez Delgado, N.; Gutiérrez Díaz, J.; Álvarez Lucero, G.; Guevara Santamaría, M.; Olivera, C.; Olmedo, G.; Bunning, S.; Vargas, R. (2021). Estimación de carbono orgánico del suelo en Colombia, una herramienta de gestión del territorio. Ecosistemas. 30(1): 2019. https://doi.org/10.7818/ECOS.2019
  9. Burbano-Orjuela, H. (2018). El carbono orgánico del suelo y su papel frente al cambio climático. Revista De Ciencias Agrícolas. 35(1): 82-96. https://doi.org/10.22267/rcia.183501.85
  10. Cantú, I.; Yáñez, M.I. (2018). Efecto del cambio de uso de suelo en el contenido del carbono orgánico y nitrógeno del suelo. Revista Mexicana De Ciencias Forestales. 9(45): 122-150. https://doi.org/10.29298/rmcf.v9i45.138
  11. Carvajal-Agudelo, B.N.; Andrade, H.J. (2021). Organic carbon in soils with different systems of use in Tacarimena Yopal, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica. 24(1): e1921. https://doi.org/10.31910/rudca.v24.n1.2021.1921
  12. Castillo-Valdez, X.; Etchevers-Barra, J.D.; Hidalgo-Moreno, C.M.I.; Aguirre-Gómez, A. (2021). Evaluación de la calidad de suelo: generación e interpretación de indicadores. Terra Latinoamericana. 39: e698. https://doi.org/10.28940/terra.v39i0.698
  13. Centro de Monitoreo de la Conservación Mundial del Programa de las Naciones Unidas para el Medio Ambiente-UNEP-WCMC. (2016). El estado de la biodiversidad en América Latina y el Caribe: una evaluación del avance hacia las metas de Aichi para la diversidad biológica. Cambridge, Reino Unido: UNEP-WCMC. 140p. https://bvearmb.do/handle/123456789/3559
  14. Contreras-Santos, J.L.; Martínez Atencia, J.; Cadena Torres, J.; Fallas Guzmán, C.K. (2019). Evaluación del carbono acumulado en suelo en sistemas silvopastoriles del Caribe Colombiano. Agronomía Costarricense. 44(1): 29-41. https://doi.org/10.15517/rac.v44i1.39999
  15. Crutzen, P.J. (2006). The “anthropocene". In: Ehlers E, Krafft T, (eds.). Earth system science in the anthropocene. Pp.13-18. Berlin: Springer. 268p. https://doi.org/10.1007/3-540-26590-2_3
  16. Dad, J.M. (2019). Organic carbon stocks in mountain grassland soils of northwestern Kashmir Himalaya: spatial distribution and effects of altitude, plant diversity and land use. Carbon Management. 10(2): 149-62. https://doi.org/10.1080/17583004.2019.1568137
  17. Devi, A.S. (2021). Influence of trees and associated variables on soil organic carbon: a review. Journal of Ecology and Environment. 45: 5. https://doi.org/10.1186/s41610-021-00180-3
  18. Food and Agriculture Organization of the United Nations-FAO. (2017). Soil Organic Carbon: the hidden potential. https://n9.cl/rtvzn
  19. Gaitán, L.; Läderach, P.; Graefe, S.; Rao, I.; van der Hoek, R. (2016). Climate-smart livestock systems: An assessment of carbon stocks and GHG emissions in Nicaragua. PLoS One. 11(12): e0167949. https://doi.org/10.1371/journal.pone.0167949
  20. Gosselink, J.G.; Hatton, R.; Hopkinson, C.S. (1984). Relationship of organic carbon and mineral content to bulk density in Louisiana marsh soils. Soil Science. 137 (3): 177-180.
  21. Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Bracht, H.J.; Söderström, B. (2015). What are the effects of agricultural management on soil organic carbon in boreo-temperate systems?. Environmental Evidence. 4: 23. https://doi.org/10.1186/s13750-015-0049-0
  22. Hao, Y.; Lal, R.; Owens, L.B.; Izaurralde, R.C.; Post, W.M.; Hothem, D.L. (2002). Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds. Soil and Tillage Research. 68 (2): 133–142. https://doi.org/10.1016/S0167-1987(02)00113-7
  23. Intergovernmental Panel on Climate Change-IPCC. (2003). Good practice for land use, land use change and forestry. Kanagawa: Institute for Global Environmental Strategies. 590p.
  24. Intergovernmental Panel on Climate Change-IPCC. (2019). Introduction In: Calvo Buendia, E.; Tanabe, K.; Kranjc, A.; Baasansuren, J.; Fukuda, M.; Ngarize, S.; Osako, A.; Pyrozhenko, Y.; Shermanau, P.; Federici, S. (eds). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. pp. 20-48. Vol. 4. Switzerland: Published IPCC.
  25. Intergovernmental Panel on Climate Change-IPCC. (2021). Summary for Policymakers. In: Masson‑Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; Huang, M.; Leitzell, K.; Lonnoy, E.; Matthews, J.B.R.; Maycock, T.K.; Waterfield, T.; Yelekçi, O.; Yu, R.; Zhou, B. (eds.). The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 3–32. Cambridge: Cambridge University Press.
  26. Jiménez, E.; Fonseca, W.Y.; Pazmiño, L. (2019). Sistemas silvopastoriles y cambio climático: Estimación y predicción de biomasa arbórea. Granja. 29 (1): 45-55. https://doi.org/10.17163/lgr.n29.2019.04
  27. Jullian, C.; Nahuelhual, L.; Mazzorana, B.; Aguayo, M. (2018). Evaluación del servicio ecosistémico de regulación hídrica ante escenarios de conservación de vegetación nativa y expansión de plantaciones forestales en el centro-sur de Chile. Bosque. 39(2): 277-289. http://dx.doi.org/10.4067/s0717-92002018000200277
  28. Keel, S.G.; Anken, T.; Büchi, L.; Chervet, A.; Fliessbach, A.; Flisch, R.; Huguenin-Elie, O.; Mäder, P.; Mayer, J.; Sinaj, S.; Sturny, W.; Wüst-Galley, C.; Leifeld, J. (2019). Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices. Agriculture, Ecosystems & Environment. 286: 106654. https://doi.org/10.1016/j.agee.2019.106654
  29. Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science. 304(5677): 1623-1627. http://dx.doi.org/10.1126/science.1097396
  30. Lal, R. (2008). Carbon sequestration. Philos Philosophical Transactions of the Royal Society B. 363(1492): 815-30. https://doi.org/10.1098/rstb.2007.2185
  31. Lorenz, K.; Lal, R. (2016). Environmental impact of organic agriculture. Advances in Agronomy. 139: 99-152. https://doi.org/10.1016/bs.agron.2016.05.003
  32. Muñoz-Rojas, M.; Delgado, M.; Lucas, M.E. (2021). La biodiversidad y el carbono orgánico del suelo son esenciales para revertir la desertificación. Ecosistemas. 30(3): 2238. https://doi.org/10.7818/ECOS.2238
  33. Ogle, S.M.; Breidt, F.J.; Paustian, K. (2005). Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochem. 72(1): 87-121. https://doi.org/10.1007/s10533-004-0360-2
  34. Oliveira, J.M.; Gollany, H.T.; Polumsky, R.W.; Madari, B.E.; Leite, L.F.C.; Machado, P.L.; Carvalho, M.T. (2022). Predicting soil organic carbon dynamics of Integrated Crop-Livestock System in Brazil using the CQESTR model. Frontiers in Environmental Science. 10: 826786. https://doi.org/10.3389/fenvs.2022.826786
  35. Rani, S. (2021). Clay mineralogy: soil carbon stabilization and organic matter interaction. In: Datta, R.; Meena R.S. (eds). Soil carbon stabilization to mitigate climate change. pp. 83-123. Singapore: Springer. 332p. https://doi.org/10.1007/978-981-33-6765-4
  36. Rojas, A.S.; Andrade, H.J.; Segura, M.A. (2018). Los suelos del paisaje alto-andino de Santa Isabel (Tolima, Colombia) ¿son sumideros de carbono orgánico?. Revista U.D.C.A Actualidad & Divulgación Científica. 21(1): 51-59. https://doi.org/10.31910/rudca.v21.n1.2018.662
  37. Sánchez, G.; Obrador, J.; Palma-López, D.; Salgado, S. (2003). Densidad aparente en un vertisol con diferentes agrosistemas. Interciencia. 28(6): 347-351.
  38. Seó, H. L.; Machado Filho, L. C.; Brugnara, D. (2017). Rationally managed pastures stock more carbon than no-tillage fields. Frontiers in Environmental Science. 5: 87. https://doi.org/10.3389/fenvs.2017.00087
  39. Sharma, M.; Datta, R.; Kedia, V.K.; Brtnicky, M. (2021). Microbial Potential for Carbon Fixation and Stabilization. In: Datta, R.; Meena R.S. (eds). Soil Carbon Stabilization to Mitigate Climate Change. pp. 125-168. Singapore: Springer. 332p. https://doi.org/10.1007/978-981-33-6765-4_4
  40. Shen, Y.; Fang, Y.; Chen, H.; Ma, Z.; Huang, C.; Wu, X.; Chang, S.X.; Tavakkoli, E.; Cai, Y. (2023). New insights into the relationships between livestock grazing behaviors and soil organic carbon stock in an alpine grassland. Agriculture, Ecosystems & Environment. 355: 108602. https://doi.org/10.1016/j.agee.2023.108602
  41. Universidad Del Tolima. (2021). Centro universitario regional del norte CURND. condiciones climáticas. http://facultadingenieriaagronomica.ut.edu.co/centro-universitario-regional-del-norte.html#caracteristicas
  42. Walkley, A.; Black, I.A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37(1): 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
  43. Weil, R.; Brady, N. (2017). The Nature and Properties of Soils. 15th ed. Columbus: Pearson Education. 1086p.
  44. Wiltshire, S.; Beckage, B. (2022). Soil carbon sequestration through regenerative agriculture in the U.S. state of Vermont. PLOS climate. 1(4): e0000021. https://doi.org/10.1371/journal.pclm.0000021
  45. World Meteorological Organization. (2019). Greenhouse Gas Bulletin No. 15. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018 WMO. https://n9.cl/vs29s
  46. World Meteorological Organization. (2018). WMO Greenhouse Gas Bulletin No. 14 The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2017. https://community.wmo.int/en/wmo-greenhouse-gas-bulletin-14
  47. World Meteorological Organization-. (2021). State of the Global Climate 2020 (WMO-No. 1264). https://acortar.link/kA4MoE
  48. Zúñiga Ugalde, F.; Huertas Delgado, J.; Guerrero Obando, G.; Dörner Fernández, J.; Sarasty Bravo, J.; Burbano Orjuela, H. (2018). Propiedades morfológicas de los suelos asociadas a los ecosistemas de Páramo, Nariño, Sur de Colombia. Terra Latinoamericana. 36(2): 183-196. https://doi.org/10.28940/terra.v36i2.363

Downloads

Download data is not yet available.