contadores
Skip to main navigation menu Skip to main content Skip to site footer

Review Article

Vol. 42 No. 1 (2025): Revista de Ciencias Agrícolas - Primer cuatrimestre, Enero - Abril 2025

Resistance of agricultural pests to synthetic insecticides in Colombia: A review

DOI
https://doi.org/10.22267/rcia.20254201.252
Submitted
October 29, 2024
Published
2025-04-28

Abstract

The phenomenon of insecticide resistance is defined as the ability of insect populations to develop the capacity to survive doses of insecticides that would otherwise be lethal. This phenomenon can be attributed to the natural selection of individuals with genetic mutations that confer resistance. A comprehensive understanding of insecticide resistance mechanisms is crucial for developing novel control strategies within existing integrated pest management plans. In this context, this review examines the research conducted to characterize the resistance of agricultural pests (insects/mites) to insecticides/acaricides in Colombia. A search of relevant scientific literature was conducted using keywords in the databases. A literature review revealed that, according to reports from Colombia, there have been 27 documented instances of insecticide/acaricide resistance across 12 species. Conversely, the Arthropod Pesticide Resistance Database (APRD) indicates the existence of 98 reports of resistance to insecticides/acaricides distributed across 10 species. A single instance of acaricide resistance was identified in the respiratory target; all other cases demonstrated resistance to the nervous and muscular targets. In this review, we present the main results, which are focused on determining toxicity curves and calculating lethal concentrations. We highlight the research carried out in the last decade, which makes use of new molecular techniques and allows a more detailed view of the resistance mechanisms. Furthermore, we suggest novel methodologies that could be employed to improve current integrated pest management plans.

References

  1. Aguirre-Obando, O. A.; Bona, A. C. D.; Duque L. J. E.; Navarro-Silva, M. A. (2015). Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoologia (Curitiba). 32(1): 14–22. https://doi.org/10.1590/S1984-46702015000100003
  2. Akçay, A. (2013). The Calculation of LD50 Using Probit Analysis. The FASEB Journal. 27(1): 1217-28. https://doi.org/10.1096/fasebj.27.1_supplement.1217.28
  3. Alcaraz, V. H. (1971). Probables problemas de control de plagas que puedan presentarse en el cultivo del algodón en Colombia y sus posibles soluciones. 1. Edición. Bogotá, D.C.: Federación Nacional de Algodoneros. 20p.
  4. Bacca, T.; Haddi, K.; Pineda, M.; Guedes, R. N. C.; Oliveira, E. E. (2017). Pyrethroid resistance is associated with a kdr -type mutation (L1014F) in the potato tuber moth Tecia solanivora. Pest Management Science. 73(2): 397–403. https://doi.org/10.1002/ps.4414
  5. Bass, C.; Nauen, R. (2023). The molecular mechanisms of insecticide resistance in aphid crop pests. Insect Biochemistry and Molecular Biology. 156: 103937. https://doi.org/10.1016/j.ibmb.2023.103937
  6. Beard, J. (2006). DDT and human health. Science of The Total Environment. 355(1–3): 78–89. https://doi.org/10.1016/j.scitotenv.2005.02.022
  7. Blanco, C.; Chiaravalle, W.; Dalla-Rizza, M.; Farias, J.; García-Degano, M.; Gastaminza, G.; Mota-Sánchez, D.; Murúa, M.; Omoto, C.; Pieralisi, B.; Rodríguez, J.; Rodríguez-Maciel, J.; Terán-Santofimio, H.; Terán-Vargas, A.; Valencia, S.; Willink, E. (2016). Current situation of pests targeted by Bt crops in Latin America. Current Opinion in Insect Science. 15: 131–138. https://doi.org/10.1016/j.cois.2016.04.012
  8. Buitrago, N. A.; Acosta, A.; Cardona, C. (1994). Niveles de resistencia a insecticidas en Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae), plaga del fríjol común. Revista Colombiana de Entomología. 20(2): 108–114.
  9. Chrn, C.; Shi, X.; Gao, X. (2016). Mechanism of insect metabolic resistance to pyrethroid insecticides. Chinese Journal of Pesticide Science. 18(5): 545–555. https://doi.org/10.16801/j.issn.1008-7303.2016.0078
  10. Collins, M. D. (1987). Manejo de la resistencia en Heliothis spp a los insecticidas piretroides. https://doi.org/http://hdl.handle.net/20.500.12324/13701
  11. Constant, R. (1999). Target site mediated insecticide resistance: what questions remain? Insect Biochemistry and Molecular Biology. 29(5): 397–403. https://doi.org/10.1016/S0965-1748(99)00024-7
  12. Costantini, D. (2019). Hormesis Promotes Evolutionary Change. Dose-Response. 17(2): 155932581984337. https://doi.org/10.1177/1559325819843376
  13. Cutler, G. C.; Guedes, R. N. C. (2017). Occurrence and Significance of insecticide-induced hormesis in insects. In: Duke, S. O.; Kudsk, P.; Solomon, K.(eds). Pesticide Dose: Effects on the Environment and Target and Non-Target Organisms. pp. 101–119. 1st edition. Washington, DC: Agricultural Research Service. 197p. https://doi.org/10.1021/bk-2017-1249.ch008
  14. EPPO. (2024). European and Mediterranean Plant Protection Organization Organisation Européenne et Méditerranéenne pour la Protection des Plantes. https://www.eppo.int/
  15. Erdogan, C.; Toprak, U.; Gurkan, M. O. (2024). Biochemical and molecular analyses of insecticide resistance in greenhouse populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in Türkiye. Phytoparasitica. 52(2): 41.
  16. https://doi.org/10.1007/s12600-024-01155-5
  17. Gnanadhas, D. P.; Marathe, S. A.; Chakravortty, D. (2013). Biocides – resistance, cross-resistance mechanisms and assessment. Expert Opinion on Investigational Drugs. 22(2): 191–206. https://doi.org/10.1517/13543784.2013.748035
  18. Guedes, R. N. C.; Smagghe, G.; Stark, J. D.; Desneux, N. (2016). Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs. Annual Review of Entomology. 61(1): 43–62. https://doi.org/10.1146/annurev-ento-010715-023646
  19. Gupta, R. C.; Doss, R. B.; Yurdakok-Dikmen, B.; Malik, J. K.; Zaja-Milatovic, S.; Milatovic, D. (2022). Organophosphates and carbamates. In: Gupta, R. Reproductive and Developmental Toxicology pp. 617–639. 3th Edition. Academic Press. 1460p. https://doi.org/10.1016/B978-0-323-89773-0.00033-3
  20. Gutiérrez, Y.; Bacca, T.; Zambrano, L. S.; Pineda, M.; Guedes, R. N. (2019). Trade‐off and adaptive cost in a multiple‐resistant strain of the invasive potato tuber moth Tecia solanivora. Pest Management Science. 75(6): 1655–1662. https://doi.org/10.1002/ps.5283
  21. Haddi, K.; Berger, M.; Bielza, P.; Cifuentes, D.; Field, L. M.; Gorman, K.; Rapisarda, C.; Williamson, M. S.; Bass, C. (2012). Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology. 42(7): 506–513. https://doi.org/10.1016/j.ibmb.2012.03.008
  22. ICA. (2024). Reglamentación de Plagas. Plagas Cuarentenarias Ausentes. https://www.ica.gov.co/areas/agricola/servicios/epidemiologia-agricola/plagas-reglamentadas/plagas-cuarentenarias-ausentes.
  23. IRAC. (2011). IRAC Susceptibility Test Methods Series. 1, 1–2. https://irac-online.org/test-methods/
  24. IRAC. (2024a). IRAC. Mechanisms resistance. https://irac-online.org/training-centre/resistance/mechanisms/
  25. IRAC. (2024b). IRAC. Test Method Library. https://irac-online.org/test-methods/test-method-library/
  26. Jaramillo-Barrios, C. I.; Varón-Devia, E. H.; Monje-Andrade, B. (2020). Economic injury level and action thresholds for Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in maize crops. Revista Facultad Nacional de Agronomía Medellín. 73(1): 9065–9076. https://doi.org/10.15446/rfnam.v73n1.78824
  27. Jarman, W. M.; Ballschmiter, K. (2012). From coal to DDT: the history of the development of the pesticide DDT from synthetic dyes till Silent Spring. Endeavour. 36(4): 131–142. https://doi.org/10.1016/j.endeavour.2012.10.003
  28. Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. (2013). Current Challenges and Trends in the Discovery of Agrochemicals. Science. 341(6147): 742–746. https://doi.org/10.1126/science.1237227
  29. Liu, N. (2012). Pyrethroid resistance in insects: genes, mechanisms, and regulation. In: Perveen, F.(ed). Insecticides: Advances in Integrated Pest Management. pp. 457–468. 1st edition. Croatia: Intechopen 726p. 10.5772/28737
  30. Love, R. R.; Sikder, J. R.; Vivero, R. J.; Matute, D. R.; Schrider, D. R. (2023). Strong Positive Selection in Aedes aegypti and the Rapid Evolution of Insecticide Resistance. Molecular Biology and Evolution. 40(4). https://doi.org/10.1093/molbev/msad072
  31. Lozano Cruz, B. (1967). Resistencia de Heliothis virescens Fabricius al D.D.T. en la zona algodonera del Tolima sur. Ibagué: Universidad del Tolima 65p.
  32. Madgwick, P. G.; Wubs, M., Kanitz, R. (2023). Optimization of long-lasting insecticidal bed nets for resistance management: a modelling study and user-friendly app. Malaria Journal. 22(1): 290. https://doi.org/10.1186/s12936-023-04724-x
  33. Maienfisch, P.; Stevenson, T. M. (2015). Modern Agribusiness - Markets, Companies, Benefits and Challenges. In: Maienfisch, P.; Stevenson, T. Discovery and Synthesis of Crop Protection Products. pp 1-13. Washington, DC: American Chemical Society. 467 p. https://doi.org/10.1021/bk-2015-1204.ch001
  34. Monnerat, R.; Martins, E.; Queiroz, P.; Ordúz, S.; Jaramillo, G.; Benintende, G.; Cozzi, J.; Real, M. D.; Martinez-Ramirez, A.; Rausell, C.; Cerón, J.; Ibarra, J. E.; Del Rincon-Castro, M. C.; Espinoza, A. M.; Meza-Basso, L.; Cabrera, L.; Sánchez, J.; Soberon, M.; Bravo, A. (2006). Genetic Variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) Populations from Latin America Is Associated with Variations in Susceptibility to Bacillus thuringiensis Cry Toxins. Applied and Environmental Microbiology. 72(11): 7029–7035. https://doi.org/10.1128/AEM.01454-06
  35. Mota-Sanchez, D.; Wise, J. C. (2024). the arthropod pesticide resistance database. https://www.pesticideresistance.org/search.php
  36. Murillo, L.; Mosquera, F. (1984). Evaluación de resistencia a tres acaricidas utilizados en el control de Tetranychus cinnabarinus (Boisduval) en cultivos de clavel para exportación. Revista Colombiana de Entomología. 10(1): 51–56. https://doi.org/10.25100/socolen.v10il-2.10275
  37. Navarro, L.; Gongora, C.; Benavides, P. (2010). Single nucleotide polymorphism detection at the Hypothenemus hampei Rdl gene by allele-specific PCR amplification with Tm-shift primers. Pesticide Biochemistry and Physiology. 97(3): 204–208. https://doi.org/10.1016/j.pestbp.2010.01.006
  38. Orjuela, L. I.; Morales, J. A.; Ahumada, M. L.; Rios, J. F.; González, J. J.; Yañez, J.;Rosales, A.; Cabarcas, D. M.; Venegas, J.; Yasnot, M. F.; Quiñones, M. L. (2018). Insecticide Resistance and Its Intensity in populations of malaria vectors in Colombia. BioMed Research International. 2018(1): 1–12. https://doi.org/10.1155/2018/9163543
  39. Ortega, D. S.; Bacca, T.; Nascimento Silva, A. P.; Canal, N. A.; Haddi, K. (2021). Control failure and insecticides resistance in populations of Rhyzopertha dominica (Coleoptera: Bostrichidae) from Colombia. Journal of Stored Products Research. 92: 101802. https://doi.org/10.1016/j.jspr.2021.101802
  40. Perry, T.; Batterham, P.; Daborn, P. J. (2011). The biology of insecticidal activity and resistance. Insect Biochemistry and Molecular Biology. 41(7): 411–422. https://doi.org/10.1016/j.ibmb.2011.03.003
  41. Perry, T.; Somers, J.; Yang, Y. T.; Batterham, P. (2015). Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor: spinosyn interaction. Insect Biochemistry and Molecular Biology. 64: 106–115. https://doi.org/10.1016/j.ibmb.2015.01.017
  42. Ranganathan, M.; Narayanan, M.; Kumarasamy, S. (2022). Importance of Metabolic Enzymes and Their Role in Insecticide Resistance. In: Surajit, M., Ramkumar, G., Karthi, S.; Fengliang, J. (eds). New and Future Development in Biopesticide Research: Biotechnological Exploration. pp. 243–260. Singapore: Springer Nature Singapore. https://doi.org/https://doi.org/10.1007/978-981-16-3989-0_10
  43. Rendon, F.; Cardona, C. (1976). Aumenta la resistencia del Heliothis a los insecticidas. El Algodonero. 8: 4. https://www.socolen.org.co/memoriasyresumenes
  44. Rendon, F.; Revelo, R.; Cardona, C. (1977). Resistencia de Heliothis virescens a metil paratión y toxametil en nueve zonas algodoneras del país. IV Congreso de La Sociedad Colombiana de Entomología. 28. https://www.socolen.org.co/memoriasyresumenes
  45. Rendon, F.; Revelo, R.; Cardona, C. (1978). La resistencia de plagas del algodonero a los insecticidas de Colombia y sus implicaciones actuales. Manejo de Plaguicidas y Protección Del Ambiente. 159–168. https://www.socolen.org.co/memoriasyresumenes
  46. Rendón, F.; Siabatto, A.; Herrera, M. A.; Alvarez, A, G. (1990). Results of a pilot programme to monitor the resistance of Heliothis virescens (Fabricius) to methyl parathion and pyrethroids in the cotton region of Espinal, 1988 harvest. Revista Colombiana de Entomologia. 1(20): 16–22.
  47. Ríos-Díez, J. D.; Saldamando-Benjumea, C. I. (2011). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: A Study of the genetic basis of resistance. Journal of Economic Entomology. 104(5): 1698–1705. https://doi.org/10.1603/EC11079
  48. Rix, R. R.; Guedes, R. N. C.; Christopher Cutler, G. (2022). Hormesis dose–response contaminant-induced hormesis in animals. Current Opinion in Toxicology. 30: 100336.
  49. https://doi.org/10.1016/j.cotox.2022.02.009
  50. Rodriguez-Chalarca, J.; Valencia, S. J.; Rivas-Cano, A.; Santos-González, F.; Romero, D. P. (2024). Impact of Bt corn expressing Bacillus thuringiensis Berliner insecticidal proteins on the growth and survival of Spodoptera frugiperda larvae in Colombia. Frontiers in Insect Science. 4(1): 1-15. https://doi.org/10.3389/finsc.2024.1268092
  51. Rodríguez, I.; Cardona, C. (2001). Problemática de Trialeurodes vaporariorum y Bemisia tabaci (Homoptera: Aleyrodidae) como plagas de cultivos semestrales en el Valle del Cauca. Revista Colombiana de Entomología. 27(1): 21–26. https://doi.org/10.25100/socolen.v27i1.9659
  52. Rodríguez, I.; Morales, H.; Bueno, J. M.; Cardona, C. (2005). El biotipo B de Bemisia tabaci (Homoptera: Aleyrodidae) adquiere mayor importancia en el Valle del Cauca. Revista Colombiana de Entomología. 31(1): 21–28.
  53. Rodríguez, I.; Morales, H.; Cardona, C. (2003). Líneas base, dosis diagnóstica y medición periódica de resistencia a insecticidas en poblaciones de adultos e inmaduros de Trialeurodes vaporariorum (Homoptera: Aleyrodidae) en el Valle del Cauca, Colombia. Revista Colombiana de Entomología. 29(1): 29–33.
  54. Rodríguez, I. V.; Bueno, J. M.; Cardona, C.; Morales, H. (2012). Biotipo B de Bemisia tabaci (Hemiptera: Aleyrodidae): plaga de pimentón en el Valle del Cauca, Colombia. Revista Colombiana de Entomología. 38(1): 14–22.
  55. Sajad, K.; Muhammad, N.; Muhammad, R.; Wajid, K.; Muhammad, F.; Shah, A. S.; Fazl, i S.; Fawad, A.; Khaliq, U. R.; Ahsan, K.; Shahid, A.; Muhammad, M. (2020). Mechanism of Insecticide Resistance in Insects/Pests. Polish Journal of Environmental Studies. 29(3): 1–8. https://doi.org/10.15244/pjoes/108513
  56. Sakuma, M. (1998). Probit analysis of preference data. Applied Entomology and Zoology. 33(3): 339–347. https://doi.org/10.1303/aez.33.339
  57. Sánchez-Bayo, F. (2019). Current-use Pesticides. In: Sanchez-Hernandez., J.(eds). Bioremediation of Agricultural Soils. pp. 3–29. 1st Edition. Boca Ratón: CRC Press. 296p. https://doi.org/10.1201/9781315205137-1
  58. SIB. (2024). Red nacional de datos abiertos sobre biodiversidad. Database. https://biodiversidad.co/data/
  59. Sparks, T. C.; Crossthwaite, A. J.; Nauen, R., Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; Kennedy, R.; Nakao, T.; Popham, H. J. R.; Salgado, V.; Watson, G. B.; Wedel, B. J.; Wessels, F. J. (2020). Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification - a tool for resistance management. Pesticide Biochemistry and Physiology. 167: 104587.
  60. https://doi.org/10.1016/j.pestbp.2020.104587
  61. Sparks, T. C.; Lorsbach, B. A. (2017). Agrochemical Discovery - Building the Next Generation of Insect Control Agents. In: Goross, A. D.; Ozoe, Y.; Coats J. R.(eds). Advances in Agrochemicals: Ion Channels and G Protein-Coupled Receptors (GPCRs) as Targets for Pest Control. pp. 1–17. Washington: American Chemical Society. 141p. https://doi.org/10.1021/bk-2017-1264.ch001
  62. Sparks, T. C.; Nauen, R. (2015). IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology. https://doi.org/10.1016/j.pestbp.2014.11.014
  63. Tyler, P. S.; Evans, N. (1981). A tentative method for detecting resistance to gamma-HCH in three bruchid beetles. Journal of Stored Products Research. 17(3): 131–135. https://doi.org/10.1016/0022-474X(81)90012-6
  64. Valencia-Cataño, S. J.; Rodríguez-Chalarca, J.; Blanco, C. A. (2016). Effect of Genetically-Modified Cotton Cultivars on Demographic Parameters of Spodoptera frugiperda in Colombia. Southwestern Entomologist. 41(4): 963–970. https://doi.org/10.3958/059.041.0426
  65. Valencia, E.; Plata, C.; Corredor, C.: Cardona, C. (1993). Resistencia enzimática a insecticidas en larvas de Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Revista Colombiana de Entomología. 19(4): 131–138. https://doi.org/10.25100/socolen.v19i4.10069
  66. Wang, X.; Wang, R. (2024). Insecticide resistance: Monitoring, mechanism and management. Journal of Applied Entomology. 148(7): 735–737. https://doi.org/10.1111/jen.13322
  67. Wolfenbarger, D. A.; Lukefahr, M. J.; Graham, H. M. (1973). LD50 Values of Methyl Parathion and Endrin to Tobacco Budworms and Bollworms Collected in the Americas and Hypothesis on the Spread of Resistance in These Lepidopterans to These Insecticides. Journal of Economic Entomology. 66(1): 211–216. https://doi.org/10.1093/jee/66.1.211
  68. Zalucki, M.: Furlong, M. (2017). Behavior as a mechanism of insecticide resistance: evaluation of the evidence. Current Opinion in Insect Science. 21: 19–25. https://doi.org/10.1016/j.cois.2017.05.006
  69. Zenner de Polanía, I. (1996). Riesgo del uso de insecticidas en agroecosistemas nuevos, con énfasis en resistencia de insectos a insecticidas. https://agris.fao.org/search/en/providers/122610/records/64775f5ba3fd11e4303b8349
  70. Zenner, I.; Álvarez, J. A.; Mejía, R.; Bayona, M. A. (2005). Influencia de la toxina Cry1Ac del Bacillus thuringiensis sobre el desarrollo del cogollero del maíz Spodoptera frugiperda (JE Smith). Revista Actualidad & Divulgación Científica. 8(2): 129–139.

Downloads

Download data is not yet available.