contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 2 (2025): Revista de Ciencias Agrícolas - Second four, May - August 2025

Use of silver nanoparticles for controlling Burkholderia glumae in rice: Characterization and field results

DOI
https://doi.org/10.22267/rcia.20254202.267
Submitted
November 6, 2024
Published
2025-08-29

Abstract

Rice, Oryza sativa L., serves as a staple food for a substantial portion of the global population, making its protection against pathogens like Burkholderia glumae critically important. While recent studies have explored various nanotechnological approaches for phytopathogen control, the specific field application of silver nanoparticles against B. glumae remains poorly documented. This study evaluated the field efficacy of silver nanoparticles (AgNPs) as a treatment against B. glumae, comparing them with traditional methods such as Starner WP (a synthetic fungicide) application. AgNPs were synthesized electrochemically and characterized by UV/VIS spectrophotometry. Burkholderiaglumae detection was performed using Polymerase Chain Reaction (PCR). Employing a randomized block design, various growth parameters of rice seedlings were analyzed during five weeks post-treatment. Application of AgNPs improved yield parameters by reducing the incidence of grains affected by B. glumae by 45%, increasing the total grain number by 20%, and raising grain weight by 15%. In contrast, root volume decreased by about 10%, a finding consistent with prior greenhouse research. Treated seedlings exhibited more intense green foliage, suggesting improved plant health. These results were corroborated by morphological variations, indicating differential impact on growth and disease resistance. This study provides valuable insights into nanotechnology applications for sustainable agriculture and emphasizes the need for a multifaceted approach to disease management in rice.  AgNPs represent a promising sustainable alternative to conventional bactericides.

References

  1. Alfosea-Simón, F. J.; Burgos, L.; Alburquerque, N. (2025). Silver nanoparticles help plants grow, alleviate stresses, and fight against pathogens. Plants. 14(3): 428. https://doi.org/10.3390/plants14030428
  2. Arango-Londoño, D.; Ramirez-Villegas, J.; Barrios-Pérez, C.; Bonilla-Findji, O.; Jarvis, A.; Uribe, J. (2020). Closing yield gaps in Colombian direct seeding rice systems: a stochastic frontier analysis. Agronomía Colombiana. 38(1): 110–119. https://doi.org/10.15446/agron.colomb.v38n1.79470
  3. Benitez-Alfonso, Y.; Soanes, B. K.; Zimba, S.; Sinanaj, B.; German, L.; Sharma, V.; Bohra, A.; Kolesnikova, A.; Dunn, J.; Martin, A.; Rahman, M.K.; Saati-Santamaría, Z.; García-Fraile, P.; Ferreira, E.A.; Frazão, L.A.; Cowling, W.A.; Siddique, H.M.; Pandey, M.K.; Farooq, M.; Varshney, R.K.; Chapman, M.A.; Boesch, C.; Daszkowska-Golec, A.; Foyer, C.H. (2023). Enhancing climate change resilience in agricultural crops. Current Biology. 33(23): R1246-R1261. https://doi.org/10.1016/j.cub.2023.10.028
  4. Chaves-Bedoya, G.; Padilla, H.; Ortiz-Rojas, L. Y. (2023). Potential use of electrochemically synthesized silver nanoparticles on rice panicle blight pathogen, Burkholderia glumae. Revista Colombiana de Ciencias Hortícolas. 16(3): e14738. https://doi.org/10.17584/rcch.2022v16i3.14738
  5. Doyle, J.; Doyle, J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical bulletin. 19(1): 11-15.
  6. Fadiji, A. E.; Yadav, A. N.; Santoyo, G.; Babalola, O. (2023). Understanding the plant-microbe interactions in environments exposed to abiotic stresses: An overview. Microbiological Research. 271: 127368. https://doi.org/10.1016/j.micres.2023.127368
  7. Fukagawa, N.; Ziska, L. (2019). Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology. 65(Supplement): S2-S3. https://doi.org/10.3177/jnsv.65.S2
  8. Ihtisham, M.; Noori, A.; Yadav, S.; Sarraf, M.; Kumari, P.; Brestic, M.; Imran, M; Jiang, F.; Yan, X.; Rastogi, A. (2021). Silver Nanoparticle's toxicological effects and phytoremediation. Nanomaterials. 11(9): 2164. https://doi.org/10.3390/nano11092164
  9. Jahan, Q.S.A.; Sultana, Z.; Ud-Daula, M. A.; Ashikuzzaman, M.; Shamim, M.R.; Rahman, M. M.; Khaton, A.; Tang, A.K.; Rahman, M.S.; Hossain, M.F.; Lee, S.J.; Rahman, A.T.M.M. (2024). Optimization of green silver nanoparticles as nanofungicides for management of rice bakanae disease. Heliyon. 10(6): e27579. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e27579
  10. Khan, S.; Rukayadi, Y.; Jaafar, A.H.; Ahmad, N.H. (2023). Antibacterial potential of silver nanoparticles (SP-AgNPs) synthesized from Syzygium polyanthum (Wight) Walp. against selected foodborne pathogens. Heliyon. 9(12): e22771. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e22771
  11. Lee, S. H.; Jun, B. (2019). Silver Nanoparticles: Synthesis and Application for Nanomedicine. International Journal of Molecular Sciences. 20(4): 865. https://doi.org/10.3390/ijms20040865
  12. Mann, A.; Nehra, K.; Rana, J.S.; Dahiya, T. (2021). Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Current Research in Microbial Sciences. 2: 100030. https://doi.org/10.1016/j.crmicr.2021.100030
  13. Mohidem, N.; Hashim, N.; Shamsudin, R.; Che Man, H. (2022). Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content. Agriculture. 12(6): 741. https://doi.org/10.3390/agriculture12060741
  14. Morales-Becerra, C.; Ortiz-Rojas, L. Y.; Chaves-Bedoya, G. (2023). Assessment of Burkholderia glumae control in rice (Oryza sativa) FEDEARROZ 67, using silver nanoparticles (AgNPs) under greenhouse conditions. Revista Colombiana de Ciencias Hortícolas. 17(3): e16358. https://doi.org/10.17584/rcch.2023v17i3.16358
  15. Ortega, L.; Rojas, C. M. (2021). Bacterial Panicle Blight and Burkholderia glumae: From Pathogen Biology to Disease Control. Phytopathology. 111(5): 772-778. https://doi.org/10.1094/phyto-09-20-0401-rvw
  16. Padilla-Sierra, H. A.; Peña-Rodríguez, G.; Chaves-Bedoya, G. (2021). Silver colloidal nanoparticles by electrochemistry: temporal evaluation and surface plasmon resonance. Journal of Physics: Conference Series. 2046: 012064. https://doi.org/10.1088/1742-6596/2046/1/012064
  17. Partila, A. M. (2019). Bioproduction of silver nanoparticles and its potential applications in agriculture. In: Panpatte, D. G.; Jhala, Y. K. (eds.). Nanotechnology for Agriculture. pp. 19-36. 1st edition. Singapore: Springer. 305p. https://doi.org/10.1007/978-981-32-9370-0_2
  18. Peñaloza Atuesta, G. C.; Murillo Arango, W.; Eras, J.; Oliveros, D. F.; Méndez Arteaga, J. J. (2020). Rice-Associated Rhizobacteria as a Source of Secondary Metabolites against Burkholderia glumae. Molecules. 25(11): 2567. https://www.mdpi.com/1420-3049/25/11/2567
  19. Sayler, R.; Cartwright, R.; Yang, Y. (2006). Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. Plant Disease. 90(5): 603-610. https://doi.org/10.1094/pd-90-0603
  20. Shew, A.M.; Durand-Morat, A.; Nalley, L.L.; Zhou, X.G., Rojas, C.; Thoma, G. (2019). Warming increases Bacterial Panicle Blight (Burkholderia glumae) occurrences and impacts on USA rice production. Plos One. 14(7): e0219199. https://doi.org/10.1371/journal.pone.0219199
  21. Sundin, G.; Castiblanco.; Yuan, X.; Zeng, Q.; Yang, C. (2016). Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology. Molecular Plant Pathology. 17(9): 1506-1518. https://doi.org/10.1111/mpp.12436
  22. Swinehart, D. F. (1962). The Beer-Lambert Law. Journal of Chemical Education. 39(7): 333. https://doi.org/10.1021/ed039p333
  23. Tripathi, S.; Mahra, S.; Sharma, S.; Mathew, S.; Sharma, S. (2024). Interaction of silver nanoparticles with plants: A focus on the phytotoxicity, underlying mechanism, and alleviation strategies. Plant Nano Biology. 9: 100082. https://doi.org/10.1016/j.plana.2024.100082
  24. Velásquez, A.C.; Castroverde, C.D.; He, S.Y. (2018). Plant-Pathogen Warfare under Changing Climate Conditions. Current Biology. 28(10): R619-r634. https://doi.org/10.1016/j.cub.2018.03.054
  25. Wang, D.; Saleh, N. B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T. P.; Ho, K.; Burgess,R.; Flury, M.; White, J.; Su, C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. Nature Nanotechnology. 17(4): 347-360. https://doi.org/10.1038/s41565-022-01082-8
  26. Wang, J.; Shu, K.; Zhang, L.; Si, Y. (2017). Effects of Silver Nanoparticles on Soil Microbial Communities and Bacterial Nitrification in Suburban Vegetable Soils. Pedosphere. 27(3): 482-490. https://doi.org/https://doi.org/10.1016/S1002-0160(17)60344-8
  27. Zhou. X.G. (2019). Sustainable strategies for managing bacterial panicle blight in rice. In: Jia, Y. (Ed.) Protecting Rice Grains in the Post-Genomic Era. pp. 8-11. Rijeka: IntechOpen. 218p. https://doi.org/10.5772/intechopen.84882

Downloads

Download data is not yet available.