contadores
Skip to main navigation menu Skip to main content Skip to site footer

Review Article

Vol. 42 No. 3 (2025): Vol. 42 Núm. 3 (2025): Revista de Ciencias Agrícolas - Septiembre - Diciembre 2025

Agroforestry as a strategy for soil conservation in Colombia

DOI
https://doi.org/10.22267/rcia.20254203.278
Submitted
February 26, 2025
Published
2025-12-23

Abstract

In the tropical region of Colombia, land use and the expansion of the agricultural frontier are rapidly increasing, leading to declines in soil quality and health. Agroforestry has recently been proposed as a sustainable agricultural system that provides ecosystem services such as ecosystem restoration and soil conservation. In this context, a synthesis of the ecosystem services of agroforestry was carried out, focusing on the contributions of tree diversification and its relationship with soil conditions. The findings indicate that agroforestry systems directly provide organic matter through leaf litter, which contributes to macrofaunal richness and increases the availability of N, K, P, Mg, and Ca. Moreover, soils in agroforestry systems (AFS) represent important carbon sinks. Accordingly, the present study aims to analyze the contribution of PBS to soil conservation, as well as its role in promoting increases in arthropod and vertebrate populations and in regulating water and nutrient cycles.

References

  1. Abbas, F.; Hammad, H. M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H. F. (2017). Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environmental Science and Pollution Research. 24(12): 11177-11191. https://doi.org/10.1007/s11356-017-8687-0
  2. Anim-Kwapong, G. (2003). Potential of some Neotropical Albizia species as shade trees whenreplanting cacao in Ghana. Agroforestry Systems. 58: 185-193. https://doi.org/10.1023/A:1026097423351
  3. Arévalo-Gardini, E.; Canto, M.; Alegre, J.; Loli, O.; Julca, A.; Baligar, V. (2015). Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon. Plos One. 10(7): e0132147. https://doi.org/10.1371/journal.pone.0136784
  4. Barrios, E.; Valencia, V.; Jonsson, M.; Brauman, A.; Hairiah, K.; Montimer, P.; Okubo, S. (2018). Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Rev. International Journal of Biodiversity Science, Ecosystem Services & Management. 14(1):1-16. https://doi.org/10.1080/21513732.2017.1399167
  5. Basto, L. C. ; Cuellar, L. G. A.; Sanchez, Y. K. Á.; Salazar, J. C. S. (2015). Especies arbóreas de uso múltiple en zonas de bosque seco tropical en el sur de Colombia. Momentos de Ciencia. 12(1): 17-24
  6. Bateman, I. J.; Harwood, A. R.; Abson, D. J.; Andrews, B.; Crowe, A.; Dugdale, S.; Fezzi, C.; Fonde, J.; Hadley, D.; Haines-Young, R.; Hulme, M.; Kontolen, A.; Munday, P.; Pascual, U.; Paterson, J.; Perino, G.; Sen, A.; Siriwardena, G; Termansen, M. (2014). Economic analysis for the UK national ecosystem assessment: synthesis and scenario valuation of changes in ecosystem services. Environmental and Resource Economics. 57(2): 273-297. https://doi.org/10.1007/s10640-013-9662-y
  7. Beer, J. (1988). Litter production and nutrient cycling in coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees. Agroforestry systems. 7(2): 103-114. https://doi.org/10.1007/BF00046846
  8. Beer, J.; Harvey, C.; Ibrahim, M.; Harmand, J. M.; Somarriba, E.; Jiménez, F. (2003). Servicios ambientales de los sistemas agroforestales. Agroforestería en las Américas. 10(37-38): 80-87.
  9. Bertomeu García, M.; Torres, M.; Pulido, F.; Moreno, G.; Giménez, J. C. (2019). Agroforestación: una alternativa a la forestación de tierras agrarias para la domesticación del paisaje rural. Cuadernos de la Sociedad Española de Ciencias Forestales. 45(2): 133-148. https://doi.org/10.31167/csecfv0i45.19486
  10. Bolaños Angulo, A.; Azero, M.; Morales, E. A. (2014). Evaluación de la influencia de tres especies: tunal (Opuntia ficus-indica L.), chacatea (Dodonea viscosa Jacq.) y molle (Schinus molle L.) sobre las propiedades edáficas de un sistema agroforestal sucesional en Combuyo-Vinto. Acta Nova. 6(4): 523-524.
  11. Bulgakov, D. S.; Rukhovich, D. I.; Shishkonakova, E. A.; Vil’Chevskaya, E. V. (2018). The application of soil-agroclimatic index for assessing the agronomic potential of arable lands in the forest-steppe zone of Russia. Eurasian Soil Science. 51: 448-459. https://doi.org/10.1134/S1064229318040038
  12. Cherubin, M. R.; Chavarro-Bermeo, J. P.; Silva-Olaya, A. M. (2019). Agroforestry systems improve soil physical quality in northwestern Colombian Amazon. Agroforestry Systems. 93(5): 1741-1753. https://doi.org/10.1007/s10457-018-0282-y
  13. De Beenhouwer, M.; Aerts, R.; Honnay, O. (2013). A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, ecosystems & environment. 175: 1-7. https://doi.org/10.1016/j.agee.2013.05.003
  14. De Oliveira Leite, J.; Valle, R. R. (1990). Nutrient cycling in the cacao ecosystem: rain and throughfall as nutrient sources for the soil and the cacao tree. Agriculture, ecosystems & environment. 32(1-2): 143-154. https://doi.org/10.1016/0167-8809(90)90130-6
  15. De Sousa, K.; Van Zonneveld, M.; Holmgren, M.; Kindt, R.; Ordoñez, J. C. (2019). The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Scientific reports. 9: 8828. https://doi.org/10.1038/s41598-019-45491-7
  16. Duran-Bautista, E. H.; Armbrecht, I.; Serrão Acioli, A. N.; Suárez, J. C.; Romero, M.; Quintero, M.; Lavelle, P. (2020). Termites as indicators of soil ecosystem services in transformed amazon landscapes. Ecological Indicators. 117: 106550. https://doi.org/10.1016/j.ecolind.2020.106550
  17. Gibson, L.; Lee, T. M.; Koh, L. P.; Brook, B. W.; Gardner, T. A.; Barlow, J.; Peres, C. A.; Bradshaw, J. A.; Laurance, W. F.; Lovejoy, T. E.; Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature. 478: 378-381. https://doi.org/10.1038/nature10425
  18. Golinska, P.; Dahm, H. (2011). Occurrence of actinomycetes in forest soil. Dendrobiology. 66: 3-13.
  19. Global Soil Partnership- GSP. (2017). Global Soil Partnership endorses guidelines on sustainable soil management. http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/
  20. Haggar, J.; Medina, B.; Aguilar, R. M.; Muñoz, C. (2013). Land use change on coffee farms in southern Guatemala and its environmental consequences. Environmental management. 51: 811-823. https://doi.org/10.1007/s00267-013-0019-7
  21. Hajjar, R.; Jarvis, D. I.; Gemmill-Herren, B. (2008). The utility of crop genetic diversity in maintaining ecosystem services. Agriculture, Ecosystems & Environment. 123(4): 261-270. https://doi.org/10.1016/j.agee.2007.08.003
  22. Jácome, M. G.; Mantovani, J. R.; Silva, A. B.; Rezende, T. T.; Landgraf, P. R. (2020). Soil attributes and coffee yield in an agroforestry system. Coffee Science. 15: e151676. https://doi.org/10.25186/.v15i.1676
  23. Jezeer, R. E.; Santos, M. J.; Verweij, P. A.; Boot, R. G.; Clough, Y. (2019). Benefits for multiple ecosystem services in Peruvian coffee agroforestry systems without reducing yield. Ecosystem Services. 40: 101033. https://doi.org/10.1016/j.ecoser.2019.101033
  24. Kay, S.; Rega, C.; Moreno, G.; Den Herber, M.; Palma, J. H.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A.; Jäger, M.; Lamersdorf, N.; Memedemin, D.; Mosquera-Losada, R.; Pantera, A.; Paracchini, M. L.; Paris, P.; Roces-Díaz, J. V.; Rolo, V.; Rosati, A.; Sandor, M.; Smith, J.; Szerencsits, E.; Varga, A.; Viaud, V.; Wawer, R.; Burgess, P. J.; Herzog, F. (2019). Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land use policy. 83: 581-593. https://doi.org/10.1016/j.landusepol.2019.02.025
  25. Klein, A. M.; Cunningham, S. A.; Bos, M.; Steffan-Dewenter, I. (2008). Advances in pollination ecology from tropical plantation crops. Ecology. 89(4): 935-943. https://doi.org/10.1890/07-0088.1
  26. Korboulewsky, N.; Perez, G.; Chauvat, M. (2016). How tree diversity affects soil fauna diversity: a review. Soil Biology and Biochemistry. 94: 94-106. https://doi.org/10.1016/j.soilbio.2015.11.024
  27. McNeely, J. A.; Schroth, G. (2006). Agroforestry and biodiversity conservation–traditional practices, present dynamics, and lessons for the future. Biodiversity & Conservation. 15: 549-554. https://doi.org/10.1007/s10531-005-2087-3
  28. Mora Marín, M. A.; Ríos Pescador, L.; Ríos Ramos, L.; Almario Charry, J. L. (2017). Impacto de la actividad ganadera sobre el suelo en Colombia. Ingeniería y Región. 17: 1-12. https://doi.org/10.25054/issn.2216-1325
  29. Mortimer, R.; Saj, S.; David, C. (2018). Supporting and regulating ecosystem services in cacao agroforestry systems. Agroforestry Systems. 92: 1639-1657. https://doi.org/10.1007/s10457-017-0113-6
  30. Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. (2011). Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. Forest Ecology and Management. 261(10): 1654-1663. https://doi.org/10.1016/j.foreco.2010.09.027
  31. N’Gbala, F. N. G.; Guéi, A. M.; Tondoh, J. E. (2017). Carbon stocks in selected tree plantations, as compared with semi-deciduous forests in centre-west Côte d’Ivoire. Agriculture, Ecosystems & Environment. 239: 30-37. https://doi.org/10.1016/j.agee.2017.01.015
  32. Nadège, M. T.; Louis, Z.; Cédric, C. D.; Louis-Paul, K. B.; Funwi, F. P.; Ingrid, T. T.; Clotex, T. V.; Flore, N. Y. A.; Bruno, T. M. R.; Julliete Mancho, N. (2019). Carbon storage potential of cacao agroforestry systems of different age and management intensity. Climate and Development. 11(7): 543-554. https://doi.org/10.1080/17565529.2018.1456895
  33. Nair, P. R. (1985). Clasificación de sistemas agroforestales. Agroforestry Systems. 3: 97-128. https://doi.org/10.1007/BF00122638
  34. Niether, W.; Glawe, A.; Pfohl, K.; Adamtey, N.; Schneider, M.; Karlovsky, P.; Pawelzik, E. (2020). The effect of short-term vs. long-term soil moisture stress on the physiological response of three cocoa (Theobroma cacao L.) cultivars. Plant Growth Regulation. 92: 295-306. https://doi.org/10.1007/s10725-020-00638-9
  35. Ordoñez, C. M.; Rangel-CH, J. (2020). Composición florística y aspectos de la estructura de la vegetación en sistemas agroforestales con cacao (Theobroma cacao L.-Malvaceae) en el departamento del Huila, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 44(173): 1033-1046. https://doi.org/10.18257/raccefyn.1183
  36. Palacios Bucheli, V. J.; Bokelmann, W. (2017). Agroforestry systems for biodiversity and ecosystem services: the case of the Sibundoy Valley in the Colombian province of Putumayo. Rev. International Journal of Biodiversity Science, Ecosystem Services & Management. 13(1): 380-397. https://doi.org/10.1080/21513732.2017.1391879
  37. Piza, P. A.; Suárez, J. C.; Andrade, H. J. (2021). Litter decomposition and nutrient release in different land use located in Valle del Cauca (Colombia). Agroforestry Systems. 95: 257-267. https://doi.org/10.1007/s10457-020-00583-6
  38. Polanía-Hincapié, K. L.; Olaya-Montes, A.; Cherubin, M. R.; Herrera-Valencia, W.; Ortiz-Morea, F. A.; Silva-Olaya, A. M. (2021). Soil physical quality responses to silvopastoral implementation in Colombian Amazon. Geoderma. 386: 114900. https://doi.org/10.1016/j.geoderma.2020.114900
  39. Rinot, O.; Levy, G. J.; Steinberger, Y.; Svoray, T.; Eshel, G. (2019). Soil health assessment: A critical review of current methodologies and a proposed new approach. Science of the Total Environment. 648: 1484-1491. https://doi.org/10.1016/j.scitotenv.2018.08.259
  40. Suarez, L.; Suárez Salazar, J.C.; Casanoves, F.; Ngo Bieng, M. (2021). Cacao agroforestry systems improve soil fertility: Comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agriculture, Ecosystems and Environment. 314: 107349 https://doi.org/10.1016/j.agee.2021.107349
  41. Rosas Patiño, G.; Muñoz Ramos, J.; Suárez Salazar, J. C. (2016). Incidencia de sistemas agroforestales con Hevea brasiliensis ( Willd . ex A . Juss .) Müll . Arg . sobre propiedades físicas de suelos de lomerío en el departamento de Caquetá, Colombia. Acta Agronómica. 65(2): 116–122. http://dx.doi.org/10.15446/acag.v65n2.45173
  42. Roy, S.; Roy, M. M.; Jaiswal, A. K.; Baitha, A. (2018). Soil arthropods in maintaining soil health: thrust areas for sugarcane production systems. Sugar Tech. 20: 376-391. https://doi.org/10.1007/s12355-018-0591-5
  43. Saavedra-Mora, D.; Murcia-Torrejano, V.; Machado-Cuellar, L.; Sánchez-Cerquera, J.; Estrada-Quintero, L.; Ordonez-Espinosa, C. (2019). Soil physical and chemical properties and their relationship with productive units in Campoalegre, Huila State, Colombia. Bioagro. 31(2): 151–158.
  44. Safaei, M.; Bashari, H.; Mosaddeghi, M. R.; Jafari, R. (2019). Assessing the impacts of land use and land cover changes on soil functions using landscape function analysis and soil quality indicators in semi-arid natural ecosystems. Catena. 177: 260-271. https://doi.org/10.1016/j.catena.2019.02.021
  45. Sauvadet, M.; Saj, S.; Freschet, G. T.; Essobo, J. D.; Enock, S.; Becquer, T.; Tixier, P.; Harmand, J. M. (2020). Cocoa agroforest multifunctionality and soil fertility explained by shade tree litter traits. Journal of Applied Ecology. 57(3): 476-487. https://doi.org/10.1111/1365-2664.13560
  46. Schroth, G.; Jeusset, A.; Gomes, A. d. S.; Florence, C. T.; Coelho, N. A. P.; Faria, D.; Läderach, P. (2016). Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitigation and adaptation strategies for global change. 21: 67-80. https://doi.org/10.1007/s11027-014-9570-7
  47. Sharma, R.; Chauhan, S. K.; Tripathi, A. M. (2016). Carbon sequestration potential in agroforestry system in India: an analysis for carbon project. Agroforestry systems. 90: 631-644. https://doi.org/10.1007/s10457-015-9840-8
  48. Siebert, S. F. (2002). From shade-to sun-grown perennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodiversity & Conservation. 11: 1889-1902. https://doi.org/10.1023/A:1020804611740
  49. Snajdr, J.; Dobiášová P.; Urbanová, M.; Petránková, M.; Cajthaml, T.; Frouz, J.; Baldrian, P. (2013). Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biology and Biochemistry. 56: 105-115. https://doi.org/10.1016/j.soilbio.2012.05.004
  50. Somarriba, E. (1998). Diagnóstico y diseño agroforestal. Agroforestería en las Américas. 5 (17-18): 68-72.
  51. Souza, G. S. D.; Alves, D. I.; Dan, M. L.; Lima, J. S. D. S.; Fonseca, A. L. C. C. D.; Araújo, J. B. S.; Guimarães, L. A. D. O. (2017). Soil physico-hydraulic properties under organic conilon coffee intercropped with tree and fruit species. Pesquisa Agropecuária Brasileira. 52(7): 539-547. https://doi.org/10.1590/S0100-204X2017000700008
  52. Stocker, C. M.; Bamberg, A. L.; Stumpf, L.; Monteiro, A. B.; Cardoso, J. H.; Lima, A. C. R. (2020). Short-term soil physical quality improvements promoted by an agroforestry system. Agroforestry systems. 94: 2053–2064. https://doi.org/10.1007/s10457-020-00524-3
  53. Suárez L.; Josa, Y.; Samboni, E.; Cifuentes, K.; Bautista, E.; Suares Salazar, J. (2018). Macrofauna edáfica em diferentes usos da terra na Amazônia colombiana. Pesquisa Agropecuária Brasileira. 53(12): 1383-1391. https://doi.org/10.1590/S0100-204X2018001200011
  54. Swinton, S. M.; Lupi, F.; Robertson, G. P.; Hamilton, S. K. (2007). Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecological economics. 64(2): 245-252. https://doi.org/10.1016/j.ecolecon.2007.09.020
  55. Teutscherová, N.; Vázquez, E.; Sotelo, M.; Vilegas, D.; Velásquez, N.; Baquero, D.; Pulleman, M.; Arango, J. (2021). Intensive short-duration rotational grazing is associated with improved soil quality within one year after establishment in Colombia. Applied Soil Ecology. 159: 103835. https://doi.org/10.1016/j.apsoil.2020.103835
  56. Torres, J.; Gutierrez, J.; Beltran, H. A. (2017). Compactación, una de las causas más comunes de la degradación del suelo. Revista Ciencias Agropecuarias. 3(2): 18-22. https://doi.org/10.36436/24223484.225
  57. Tscharntke, T.; Clough, Y.; Bhagwat, S. A.; Buchori, D.; Faust, H.; Hertel, D.; Hölscher, D.; Juhrbandt, J.; Kessler, M.; Perfecto, I.; Scherber, C.; Schroth, G.; Veldkamp, E.; Wanger, T. C. (2011). Multifunctional shade-tree management in tropical agroforestry landscapes – a review. Journal of Applied Ecology. 48(3): 619-629. https://doi.org/10.1111/j.1365-2664.2010.01939.x
  58. Vaast, P.; Bertrand, B.; Perriot, J. J.; Guyot, B.; Genard, M. (2006). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture. 86(2): 197-204. https://doi.org/10.1002/jsfa.2338
  59. Valbuena-Calderón, O. E.; Rodriguez-Perez, W.; Suarez-Salazar, J. C. (2017). Calidad de suelos bajo dos esquemas de manejo en fincas cafeteras del sur de Colombia. Agronomía mesoamericana. 28(1): 131-140. http://dx.doi.org/10.15517/am.v28i1.21092
  60. Van Der Wolf, J.; Jassogne, L.; Gram, G. I. L.; Vaast, P. (2019). Turning local knowledge on agroforestry into an online decision-support tool for tree selection in smallholders’farms. Experimental Agriculture. 55(S1):50-66. https://doi.org/10.1017/S001447971600017X
  61. Vásquez, A.; Arellano, H. (2012). Estructura, Biomasa aerea y carbono almacenado en los bosques del Sur y Noroccidente de Córdoba. http://arxiv.org/ftp/arxiv/papers/1208/1208.0248.pdf
  62. Velásquez, E.; Lavelle, P.; Andrade, M. (2007). GISQ, a multifunctional indicator of soil quality. Soil Biology and Biochemistry. 39(12): 3066-3080. https://doi.org/10.1016/j.soilbio.2007.06.013
  63. Villa, P.; Martins, S.; de Oliveira Neto, S.; Rodrigues, A.; Hermandez, E.; Kim, D. (2020). Policy forum: Shifting cultivation and agroforestry in the Amazon: Premises for REDD+. Forest Policy and Economics. 118: 102217. https://doi.org/10.1016/j.forpol.2020.102217
  64. Zhang, W., Ricketts, T., Kremen, C.; Carney, K.; Swinton, S. (2007). Ecosystem services and dis-services to agriculture. Ecological economics. 64(2): 253-260. https://doi.org/10.1016/j.ecolecon.2007.02.024

Downloads

Download data is not yet available.