contadores
Skip to main navigation menu Skip to main content Skip to site footer

Review Article

Vol. 42 No. 3 (2025): Vol. 42 Núm. 3 (2025): Revista de Ciencias Agrícolas - Septiembre - Diciembre 2025

Role of melatonin on crop development: A review

DOI
https://doi.org/10.22267/rcia.20254203.272
Submitted
April 3, 2025
Published
2025-11-26

Abstract

Melatonin, a molecule initially discovered in animals, has gained increasing importance in recent decades due to its wide range of functions in the plant kingdom. This review examines the role of melatonin in crops, from its biosynthesis to its effects on various stages of plant development, including germination, vegetative growth, flowering, and senescence. Melatonin has been shown to act as a biostimulant in plants, enhancing germination, improving tolerance to abiotic stresses such as drought and salinity, and boosting both photosynthesis and biomass production. Recent studies have underscored its importance in regulating the circadian cycle and the plant’s antioxidant response. Notable advances include research on high-value commercial crops, such as rice (Oryza sativa L.) and maize (Zea mays L.), where the exogenous application of melatonin has increased yield by 15% to 20% under stress conditions. The findings presented in this review highlight melatonin's potential, not only as a stress mitigator but also as a key component in the agronomic management of crops, enhancing productivity and sustainability in the face of current climate challenges. However, further research is needed to better understand its interactions with other phytohormones and its effectiveness across different agricultural species.

References

  1. Adhikari, B.; Olorunwa, O. J.; Barickman, T. C. (2022). Seed priming enhances seed germination and morphological traits of Lactuca sativa L. under salt stress. Seeds. 1(2): 74-86. https://doi.org/10.3390/seeds1020007
  2. Ahmad, I.; Song, X.; Ibrahim, H.; Jamal, Y.; Younas, U.; Zhu, G.; Zhou, G.; Ali, A. (2023). The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress. Frontiers in plant Science. 14: 1108507. https://doi.org/10.3389/fpls.2023.1108507
  3. Ahmad, S.; Muhammad, I.; Wang, Y.; Zeeshan, M.; Yang, L.; Ali, I.; Zhou, B. (2021). Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biology. 21: 368. https://doi.org/10.1186/s12870-021-03160-w
  4. Ahmad, S.; Wang, G.; Muhammad, I.; Chi, Y.; Zeeshan, M.; Nasar, J.; Zhou, X. (2022). Interactive effects of melatonin and nitrogen improve drought tolerance of maize seedlings by regulating growth and physiochemical attributes. Antioxidants. 11(2): 359. https://doi.org/10.3390/antiox11020359
  5. Altaf, M. A.; Lal, M. K.; Tiwari, R. K.; Naz, S.; Gahlaut, V. (2023). The potential role of melatonin in the regulation of abiotic stress in plants. Frontiers in Plant Science. 14: 1271973. https://doi.org/10.3389/fpls.2023.1271973
  6. Amin, B.; Atif, J.; Meng, H.; Ali, M.; Li, S.; Alharby, F.; Majrashi, A.; Hakeem, R.; Cheng, Z. (2022). Melatonin rescues photosynthesis and triggers antioxidant defense response in Cucumis sativus plants challenged by low temperature and high humidity. Frontiers in Plant Science. 13: 855900. https://doi.org/10.3389/fpls.2022.855900
  7. Arnao, M. B.; Hernández-Ruiz, J. (2014). Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science. 19(12): 789-797. https://doi.org/10.1016/j.tplants.2014.07.006
  8. Arnao, M. B.; Hernández‐Ruiz, J. (2015). Functions of melatonin in plants: A review. Journal of Pineal Research. 59(2): 133-150. https://doi.org/10.1111/jpi.12253
  9. Arnao, M. B.; Hernández-Ruiz, J. (2018). Melatonin and its relationship to plant hormones. Annals Botany. 121(2): 195–207. https://doi.org/10.1093/aob/mcx114
  10. Arnao, M. B.; Hernández-Ruiz, J. (2020). Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction. 33: 77 - 87. https://doi.org/10.1007/s00497-020-00388-8
  11. Azadshahraki, F.; Jamshidi, B.; Mohebbi, S. (2018). Posthrvest melatonin treatment reduces chilling injury and enhances antioxidant capacity of tomato fruit during cold storage. Directory of Open Access Journals. 32(3): 299-309. https://doi.org/10.13128/ahs-22260
  12. Back, K.; Tan, D.; Reiter, J. (2016). Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research. 61(4): 426-437. https://doi.org/10.1111/jpi.12364
  13. Bhardwaj, R.; Pareek, S.; Saravanan, C.; Yahia, E. (2021). Contribution of pre-storage melatonin application to chilling tolerance of some mango fruit cultivars and relationship with polyamines metabolism and γ-aminobutyric acid shunt pathway. Environmental and Experimental Botany. 194: 104691. https://doi.org/10.1016/j.envexpbot.2021.104691
  14. Baskin, C.; Baskin J.M. (2014). Seeds: Ecology, biogeogreapgy, and evolution of dormancy and germination. 2nd edition. San Diego: Academic Press.
  15. Berjak, P.; Pammenter, N. (2013). Implications of the lack of desiccation tolerance in recalcitrant seeds. Frontiers in Plant Science. 4: 478. https://doi.org/10.3389/fpls.2013.00478
  16. Bewley, J.; Bradford, K.; Nonogaki, H. (2013). Seeds. physiology of development, germination and dormancy. 3th edition. New York: Springer. 392p. https://doi.org/10.1007/978-1-4614-4693-4
  17. Burgueño, A. (2019). Efecto de la aplicación de melatonina en semillas de melón (Cucumis melo L.) en la germinación y crecimiento inicial de las plantas en condiciones de estrés salino. http://ri.unlu.edu.ar/xmlui/handle/rediunlu/1145
  18. Byeon, Y.; Hee, G.; Yool, H.; Back, K. (2015). Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice. Journal Experimental. Botany. 66(21): 6917-6925. https://doi.org/10.1093/jxb/erv396
  19. Carrión-Antolí, A.; Lorente-Mento, J.; Valverde, J.; Castillo, S.; Valero, D.; Serrano, M. (2021). Effects of melatonin treatment on Sweet Cherry tree yield and fruit quality. Agronomy. 12(1): 3. https://doi.org/10.3390/agronomy12010003
  20. Carrión-Antolí, A.; Martínez-Romero, D.; Guillén, F.; Zapata, P.; Serrano, M.; Valero, D. (2022). Melatonin pre-harvest treatments leads to maintenance of sweet cherry quality during storage by increasing antioxidant systems. Frontiers in Plant Science. 13. https://doi.org/10.3389/fpls.2022.863467
  21. Chen, L.; Liu, L.; Lu, B.; Ma, T.; Jiang, D.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Bai, Z.; Li, C. (2020). Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). Plos One. 15(1): e0228241. https://doi.org/10.1371/journal.pone.0228241
  22. Chung, M. H.; Deng., T. S. (2020). Effects of circadian clock and light on melatonin concentration in Hypericum perforatum L. Botanical Studies. 61: 23. https://doi.org/10.1186/s40529-020-00301-6
  23. Cortés-Montaña, D.; Bernalte‐García, M.; Palomino‐Vasco, M.; Serradilla, M.; Velardo‐Micharet, B. (2023). Effect of preharvest melatonin applications at dusk on quality and bioactive compounds content of early sweet cherries. Journal of the Science of Food and Agriculture. 104(3): 1583-1590. https://doi.org/10.1002/jsfa.13040
  24. Dawood, M. G.; El-Awadi, M. E. (2014). Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colombiana. 20(2): 223-235. https://doi.org/10.15446/abc.v20n2.43291
  25. Dong, W.; Cao, S.; Zhou, Q.; Jin, S.; Zhou, C.; Liu, Q.; Li, X.; Chen, W.; Yang, Z.; Shi, L. (2023). Hydrogen-rich water treatment increased several phytohormones and prolonged the shelf life in postharvest okras. Frontiers in Plant Science. 14: 1108515. https://doi.org/10.3389/fpls.2023.1108515
  26. Espinoza, C.; Reyna, V. (2019). Mecanismos de respuesta al estrés abiótico: hacia una perspectiva de las especies forestales. Revista Mexicana de Ciencias Forestales. 10(56): 567. https://doi.org/10.29298/rmcf.v10i56.567
  27. Farouk, S.; Al-Amri, S. (2019). Exogenous melatonin-mediated modulation of arsenic tolerance with improved accretion of secondary metabolite production, activating antioxidant capacity and improved chloroplast ultrastructure in rosemary herb. Ecotoxicology and Environmental Safety. 180: 333-347. https://doi.org/10.1016/j.ecoenv.2019.05.021
  28. Finch, W.; Leubner, G. (2006). Seed dormancy and the control of germination. New Phytologist. 171(3): 501-523. https://doi.org/10.1111/j.1469-8137.2006.01787.x
  29. Garrido, A. (2021). Efectos del tratamiento en precosecha con melatonina sobre los parámetros de calidad en granada (Mollar de Elche). https://dspace.umh.es/bitstream/11000/25487/1/TFM%20Garrido%20Au%C3%B1%C3%B3n,%20Fernando.pdf
  30. Gutiérrez, J. (2021). Efecto de la melatonina exógena sobre la germinación y crecimiento en plántulas de pimiento (Capsicum annuum) bajo estrés salino. Universidad Politecnica de Valencia. https://riunet.upv.es/handle/10251/173956
  31. Hassan, M. U.; Ghareeb, R. Y.; Nawaz, M.; Mahmood, A.; Shah, A. N.; Abdel-Megeed, A.; Abdelsalam, N. R.; Hashem, M.; Alamri, S.; Thabit, M. A.; Qari, S. H. (2022). Melatonin: A vital protectant for crops against heat stress: Mechanisms and prospects. Agronomy. 12(5): 1116. https://doi.org/10.3390/agronomy12051116
  32. Himanshu.; Sharma, S; Rana, V. S.; Ankit; Thakur, V.; Kumar, A.; Prachi; Shivender, T.; Sharma, N. (2024). Unlocking the sustainable role of melatonin in fruit production and stress tolerance: A review. CABI Agriculture and Bioscience. 5(1): 103. https://doi.org/10.1186/s43170-024-00309-z
  33. Huang, S.; Jin, S. (2024). Melatonin interaction with other phytohormones in the regulation of abiotic stresses in horticultural plants. Antioxidants. 13(6): 663. https://doi.org/10.3390/antiox13060663
  34. Ikram, M.; Mehran, M.; Rehman, H. U.; Ullah, S.; Bakhsh, M. Z. M.; Tahira, M.; Maqsood, M. F. K.; Rauf, A.; Ghafar, S.; Haider, K.; Konuşkan, Ö.; Toprak, Ç. C.; Erden, Z.; Sabagh, A. E. (2024). Mechanistic review of melatonin metabolism and signaling pathways in plants: Biosynthesis, regulation, and roles under abiotic Stress. Plant Stress. 14: 100685. https://doi.org/10.1016/j.stress.2024.100685
  35. Jing, T.; Liu, K.; Wang, Y.; Ai, X.; Bi, H. (2022). Melatonin positively regulates both dark- and age-induced leaf senescence by reducing ROS accumulation and modulating abscisic acid and auxin biosynthesis in cucumber plants. International Journal of Molecular Sciences. 23(7): 3576. https://doi.org/10.3390/ijms23073576
  36. Khan, M.; Hussain, A.; Wook, B.; Gyu, B. (2024). Melatonin: The multifaceted molecule in plant growth and defense. International Journal of Molecular Sciences. 25(12): 6799. https://doi.org/10.3390/ijms25126799
  37. Li, C.; Guo, J.; Wang, D.; Chen, X.; Guan, H.; Li, Y.; Zhang, D.; Liu, X.; He, G.; Wang, T.; Li, Y. (2023). Genomic insight into changes of root architecture under drought stress in maize. Plant Cell Environmental. 46(6): 1860-1872. https://doi.org/10.1111/pce.14567
  38. Liang, C.; Li, A.; Yu, H.; Li, W.; Liang, C.; Guo, S.; Zhang, R.; Chu, C. (2017). Melatonin regulates root architecture by modulating auxin response in rice. Frontiers in Plant Science. 8: 134. https://doi.org/10.3389/fpls.2017.00134
  39. Liu, G.; Hu, Q.; Zhang, X.; Jiang, J.; Zhang, Y.; Zhang, Z. (2022). Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. Journal of Experimental Botany. 73(17): 5818-5827. https://doi.org/10.1093/jxb/erac196
  40. Liu, J.; Liu, H.; Wu, T.; Zhai, R.; Yang, C.; Wang, Z.; Ma, F.; Xu, L. (2019). Effects of melatonin treatment of postharvest pear fruit on aromatic volatile biosynthesis. Molecules. 24(23): 4233. https://doi.org/10.3390/molecules24234233
  41. Liu, Z.; Dai, H.; Hao, J.; Li, R.; Pu, X.; Guan, M.; Chen, Q. (2023). Current research and future directions of melatonin’s role in seed germination. Stress Biology. 3: 53. https://doi.org/10.1007/s44154-023-00139-5
  42. Luo, L.; Zhang, P.; Zhu, R.; Fu, J.; Su, J.; Zheng, J.; Wang, Z.; Wang, D.; Gong, Q. (2017). Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Frontiers in Plant Science. 8: 1459. https://doi.org/10.3389/fpls.2017.01459
  43. Muhammad, I.; Ahmad, S.; Shen, W. (2024). Melatonin-mediated molecular responses in plants: Enhancing stress tolerance and mitigating environmental challenges in cereal crop production. International Journal of Molecular Sciences. 25(8): 4551. https://doi.org/10.3390/ijms25084551
  44. Murch, S. J.; Erland, L. A. (2021). A Systematic review of melatonin in plants: An example of evolution of literature. Frontiers in Plant Science. 12: 683047. https://doi.org/10.3389/fpls.2021.683047
  45. Nawaz, K.; Chaudhary, R.; Sarwar, A.; Ahmad, B.; Gul, A.; Hano, C.; Abbasi, BH.; Anjum, S. (2021). Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: Current status and future perspectives. Sustainability. 13(1): 294. https://doi.org/10.3390/su13010294
  46. Pan, Y.; Xu, X.; Li, L.; Sun, Q.; Wang, Q.; Huang, H.; Tong, Z.; Zhang, J. (2023). Melatonin-mediated development and abiotic stress tolerance in plants. Frontiers in Plant Science. 14. https://doi.org/10.3389/fpls.2023.1100827
  47. Ramasamy, K.; Karuppasami, K.; Alagarswamy, S.; Shanmugam, K.; Rathinavelu, S.; Vellingiri, G.; Muniyappan, U.; Kanthan, T.; Kuppusamy, A.; Rajendran, M.; Kathirvel, A.; Kanagarajan, S. (2023). Role of melatonin in directing plant physiology. Agronomy. 13(9): 2405. https://doi.org/10.3390/agronomy13092405
  48. Reiter, R.; Tan, D.; Zhou, Z.; Cruz, M.; Fuentes-Broto, L.; Galano, A. (2015). Phytomelatonin: assisting plants to survive and thrive. Molecules. 20(4): 7396-7437. https://doi.org/10.3390/molecules20047396
  49. Rodríguez, D. (2025). Efecto de la melatonina sobre los contenidos de prolina y el transporte de sodio y potasio en plántulas de chile habanero (Capsicum chinense Jacq.) sometidas a estrés salino. (Tesis de maestría. Centro de Investigación Científica de Yucatán). https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/3187/1/PCB_M_Tesis_2025_Dayron_Otero_Rodriguez.pdf
  50. Sano, N.; Marion-Poll, A. (2021). ABA Metabolism and homeostasis in seed dormancy and germination. International Journal of Molecular Sciences. 22(10): 5069. https://doi.org/10.3390/ijms22105069
  51. Shi, D.; Zhao, L.; Zhang, R.; Song, Q. (2024). Regulación del crecimiento y desarrollo de las plantas por la melatonina. Life. 14(12): 1606. https://doi.org/10.3390/life14121606
  52. Shi, H.; Chen, Y.; Tan, D.; Reiter, R. J.; Chan, Z.; He, C. (2015). Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. Journal of Pineal Research. 59(1): 102-108. https://doi.org/10.1111/jpi.12244
  53. Simlat, M.; Ptak, A.; Skrzypek, E.; Warchoł, M.; Morańska, E.; Piórkowska, E. (2018). Melatonin significantly influences seed germination and seedling growth of stevia rebaudiana Bertoni. Plant Biology. 6: e5009. https://doi.org/10.7717/peerj.5009
  54. Sun, C.; Liu, L.; Wang, L.; Li, B.; Jin, C.; Lin, X. (2020). Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology. 63(1): 126-145. https://doi.org/10.1111/jipb.12993
  55. Tan, D.; Reiter, R.; Manchester, L.; Yan, M.; El-Sawi, M.; Sainz, R.; Mayo, J.; Kohen, R.; Allegra, M.; Hardelan, R. (2002). Chemical and physical properties and potential mechanisms: Melatonin as a broad spectrum antioxidant and free radical scavenger. Current Topics in Medicinal Chemistry. 2(2): 181-197. https://doi.org/10.2174/1568026023394443
  56. Verma, P.; Tandon, R.; Yadav, G.; Gaur, V. (2020). Structural aspects of DNA repair and recombination in crop improvement. Frontiers in Genetics. 11: 574549. https://doi.org/10.3389/fgene.2020.574549
  57. Wang, K.; Xing, Q.; Ahammed, G.; Zhou, J. (2022). Functions and prospects of melatonin in plant growth, yield and quality. Journal of experimental. 73(17): 5928-5946. https://doi.org/10.1093/jxb/erac233
  58. Wei, W.; Li, Q.; Chu, Y.; Reiter, R. J.; Yu, X.; Zhu, D.; Zhang, W.; Ma, B.; Lin, Q.; Zhang, J.; Chen, S. (2014). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany. 66(3): 695-707. https://doi.org/10.1093/jxb/eru392
  59. Wu, C.; Hao, W.; Yan, L.; Zhang, H.; Zhang, J.; Liu, C.; Zheng, L. (2023). Postharvest melatonin treatment enhanced antioxidant activity and promoted GABA biosynthesis in yellow-flesh peach. Food Chemistry. 419: 136088. https://doi.org/10.1016/j.foodchem.2023.136088
  60. Wu, H.; Bose, J. (2024). Abiotic stress tolerance: Adaptations, mechanisms, and new techniques. The Crop Journal. 12(5): 1271–1273. https://doi.org/10.1016/j.cj.2024.10.001
  61. Yang, X.; Chen, J; Ma, Y; Huang, M; Qiu, T; Bian, H; Han, N; Wang, J. (2022). Function, Mechanism, and Application of Plant Melatonin: An Update with a Focus on the Cereal Crop, Barley (Hordeum vulgare L.). Antioxidants. 11(4): 634. https://doi.org/10.3390/antiox11040634
  62. Ye, J.; Wang, S.; Deng, X.; Yin, L.; Xiong, B.; Wang, X. (2016). Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum. 38: 48. https://doi.org/10.1007/s11738-015-2045-y
  63. Yin, Z.; Lu, J.; Meng, S.; Liu, Y.; Mostafa, I.; Qi, M.; Li, T. (2019). Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. Journal of Plant Interactions. 14(1): 453-463. https://doi.org/10.1080/17429145.2019.1645895
  64. Zeng, H.; Liu, M.; Wang, X.; Liu, L.; Wu, H.; Chen, X.; Wang, H.; Shen, Q.; Chen, G.; Wang, Y. (2022). Seed-soaking with melatonin for the improvement of seed germination, seedling growth, and the antioxidant defense system under flooding Stress. Agronomy. 12(8): 1918. https://doi.org/10.3390/agronomy12081918
  65. Zhang, H.; Mao, L.; Xin, M.; Xing, H.; Zhang, Y.; Wu, J.; Xu, D.; Wang, Y.; Shang, Y.; Wei, L.; Cui, M.; Zhuang, T.; Sun, X.; Song, X. (2022). Overexpression of GhABF3 increases cotton (Gossypium hirsutum L.) tolerance to salt and drought. BMC Plant Biology. 22: 313. https://doi.org/10.1186/s12870-022-03705-7
  66. Zhang, L.; Fang, X.; Yu, N.; Chen, J.; Wang, H.; Shen, Q.; Chen, G.; Wang, Y. (2023). Melatonin promotes rice seed germination under drought stress by regulating antioxidant capacity. Phyton-International Journal of Experimental Botany. 92(5): 1571-1587. https://doi.org/10.32604/phyton.2023.025481
  67. Zhang, N.; Sun, Q.; Zhang, H.; Cao, Y.; Weeda, S.; Ren, S.; Guo, Y. D. (2014). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany. 66(3): 647-656. https://doi.org/10.1093/jxb/eru336
  68. Zhang, T.; Wang, J.; Sun, Y.; Zhang, L.; Zheng, S. (2021). Versatile roles of melatonin in growth and stress tolerance in plants. Journal of Plant Growth Regulation. 41: 507 - 523. https://doi.org/10.1007/s00344-021-10317-2

Downloads

Download data is not yet available.