contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 3 (2025): Vol. 42 Núm. 3 (2025): Revista de Ciencias Agrícolas - Septiembre - Diciembre 2025

Pseudomonas putida, an endophyte of Piper tuberculatum, increases the biomass of cowpea (Vigna unguiculata L.)

DOI
https://doi.org/10.22267/rcia.20254203.273
Submitted
July 22, 2025
Published
2025-12-04

Abstract

Plant growth-promoting bacterial endophytes have been increasingly used in sustainable agriculture. Previous studies reported the isolation of Pseudomonas putida Pt12 with plant growth-promoting properties associated with the roots of Piper tuberculatum, a Piperaceae from the Amazon region. Thus, this study aimed to evaluate the effect of P. putida Pt12 on promoting the growth of cowpea (Vigna unguiculata L.), a legume crop with economic importance in developing countries, where its production can be affected by biotic and abiotic factors. Experiments were arranged in a completely randomized design using two methods of inoculation (seed bacterization and seedling irrigation). In seed bacterization, cowpea seeds were surface-sterilized, followed by inoculation with the Pt12 suspension (OD600= 0.3, 3×108 cells/mL). For irrigation, 8-day-old seedlings were inoculated with the P12 suspension (OD600= 0.1, 1x108 cells/mL and OD600= 0.3, 3×108 cells/mL) through soil irrigation.

Plant growth was monitored over a period of 25 days, which the parameters of biomass were assessed. The data were subjected to analysis of variance using the Scott-Knott test at 5% significance. Plants inoculated with Pt12 exhibited significantly higher growth compared to non-inoculated plants. Enhanced growth of both roots and the aerial part of the plant was observed, resulting in 206% and 59% increases in total dry biomass of plants inoculated by seed bacterization and soil irrigation, respectively. No significant differences were observed between plants irrigated with the two inoculum concentrations.

References

  1. Albuquerque, F. C.; Duarte, M. L. R.; Benchimol, R. L.; Endo, T. (2001). Resistência de piperáceas nativas da Amazônia à infecção causada por Nectria haematococca f. sp. piperis. Acta Amazonica. 31: 341-348.
  2. Bacilio-Jiménez, M.; Aguilar-Flores, S.; Ventura-Zapata, E.; Pérez-Campos, E.; Bouquelet, S.; Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil. 249(2): 271–277. http://www.jstor.org/stable/24123744
  3. Bargaz, A.; Elhaissoufi, W.; Khourchi, S.; Benmrid, B.; Borden, K. A.; Rchiad, Z. (2021). Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiological Research. 252:126842. https://doi.org/10.1016/j.micres.2021.126842
  4. Benchimol, R. L.; Freire Filho, F. R.; Gomes Júnior, R. A.; Rodrigues, J. E. L. F.; Silva, C. M.; Cardoso, R. S.; Rosário, R. G. A. (2021). Doenças fúngicas do feijão-caupi no estado do Pará. Belém-PA: Embrapa Amazônia Oriental. Circular técnica, 51. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1137782
  5. Campo-Arana, R. O.; Burgos-Ayala, P. R. (2023). Effects of seed treatment of cowpea bean Vigna unguiculata L. on the management of vascular wilt caused by Scleroctium rolfsii. Revista de Investigaciones Altoandinas. 25(3): 190-198. https://doi.org/10.18271/ria.2023.530
  6. Cely, M. V.; Siviero, M. A.; Emiliano, J.; Spago, F.; Freitas, V. F.; Barazetti, A. R.; Goya, E. T.; Lamberti, G. S.; Dos Santos, I. M.; De Oliveira, A. G.; Andrade, G. (2016). Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions. Frontiers in Plant Science. 7: 1708. https://doi.org/10.3389/fpls.2016.01708
  7. Durairaj, K.; Velmurugan, P.; Park, J. H.; Chang, W. S.; Park, Y. J.; Senthilkumar, P.; Choi, K. M.; Lee, J. H.; Oh, B. T. (2017). Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiology Letters. 364(23): fnx225. https://doi.org/10.1093/femsle/fnx225
  8. Egamberdieva, D.; Jabborova, D.; Hashem, A. (2015). Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi Journal of Biological Sciences. 22(6): 773-779. https://doi.org/10.1016/j.sjbs.2015.04.019
  9. Eid, A. M.; Fouda, A.; Abdel-Rahman, M. A.; Salem, S. S.; Elsaied, A.; Oelmüller, R.; Hijri, M.; Bhowmik, A.; Elkelish, A.; Hassan, S. E. (2021). Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants (Basel). 10(5): 935. https://doi.org/10.3390/plants10050935
  10. Etesami, H.; Glick, B. R. (2024). Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiological Research. 281: 127602. https://doi.org/10.1016/j.micres.2024.127602
  11. Ferreira, D. F.; SISVAR, Sistema de análise de variância, Versão 5.3. Universidade Federal de Lavras, Lavras, Brasil. 2010.
  12. Ferreira, S. C.; Nakasone, A. K.; Nascimento, S. M. C.; Oliveira, D. A.; Siqueira, A. S.; Cunha, E. F. M.; Castro, G. L. S.; de Souza, C. R. B. (2021). Isolation and characterization of cassava root endophytic bacteria with the ability to promote plant growth and control the in vitro and in vivo growth of Phytopythium sp. Physiological and Molecular Plant Pathology. 116: 101709. https://doi.org/10.1016/j.pmpp.2021.101709
  13. Ghosh, S. K.; Bera, T.; Chakrabarty, A. M. (2020). Microbial siderophore – A boon to agricultural sciences. Biological Control. 144: 104214. https://doi.org/10.1016/j.biocontrol.2020.104214
  14. Imperiali, N.; Chiriboga, X.; Schlaeppi, K.; Fesselet, M.; Villacrés, D.; Jaffuel, G.; Bender, S. F.; Dennert, F.; Blanco-Pérez, R.; van der Heijden, M. G. A.; Maurhofer, M.; Mascher, F.; Turlings, T. C. J.; Keel, C. J.; Campos-Herrera, R. (2017). Combined field inoculations of Pseudomonas bacteria, arbuscular mycorrhizal fungi, and entomopathogenic nematodes and their effects on wheat performance. Frontiers in Plant Science. 8: 1809. https://doi.org/10.3389/fpls.2017.01809
  15. Issifu, M.; Naitchede, L. H. S.; Ateka, E. M.; Onguso, J.; Ngumi, V. W. (2023). Synergistic effects of substrate inoculation with Pseudomonas strains on tomato phenology, yield, and selected human health-related phytochemical compounds. Agrosystems, Geosciences & Environment. 6: e20435. https://doi.org/10.1002/agg2.20435
  16. Knights, H. E.; Jorrin, B.; Haskett, T. L.; Poole, P. S. (2021). Deciphering bacterial mechanisms of root colonization. Environmental Microbiology Reports. 13(4): 428-444. https://doi.org/10.1111/1758-2229.12934
  17. Lopes, M. J. S.; Dias-Filho, M.B.; Gurgel, E.S.C. (2021a). Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems. 5: 606454. https://doi.org/10.3389/fsufs.2021.606454
  18. Lopes, M. J. S.; Santiago, B.S.; Silva, I.N.B.; Gurgel, E.S.C. (2021b). Microbial biotechnology: inoculation, mechanisms of action and benefits to plants. Research, Society and Development. 10(12): e356101220585. https://doi.org/10.33448/rsd-v10i12.20585
  19. Ma, Y.; Látr, A.; Rocha, I.; Freitas, H.; Vosátka, M.; Oliveira, R. S. (2019). Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy. 9: 33. https://doi.org/10.3390/agronomy9010033
  20. Maksimov, I.V.; Maksimova, T. I.; Sarvarova, E. R.; Blagova, D. K. (2018). Endophytic bacteria as effective agents of new-generation biopesticides (Review). Applied Biochemistry and Microbiology. 54: 128–140. https://doi.org/10.1134/S0003683818020072
  21. Medison, R. G.; Tan, L.; Medison, M. B.; Chiwina, K. E. (2022). Use of ben¬eficial bacterial endophytes: A practical strategy to achieve sustainable agriculture. AIMS Microbiology. 8(4): 624–643. https://doi.org/10.3934/microbiol.2022040
  22. Mehmood, N.; Saeed, M.; Zafarullah, S.; Hyder, S.; Rizvi, Z. F.; Gondal, A. S.; Jamil, N.; Iqbal, R.; Ali, B.; Ercisli, S.; Kupe, M. (2023). Multifaceted impacts of plant-beneficial Pseudomonas spp. in managing various plant diseases and crop yield improvement. ACS Omega. 8(25): 22296-22315. https://doi.org/10.1021/acsomega.3c00870
  23. Nascimento, S. B.; Lima, A. M.; Borges, B. N.; de Souza, C. R. B. (2015). Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.). Genetics and Molecular Research. 14: 7567-7577.
  24. Oliveira, D. A.; Ferreira, S. C.; Carrera, D. L. R.; Serrão, C. P.; Callegari, D. M.; Barros, N. L. F.; Coelho, F. M.; de Souza, C. R. B. (2021). Characterization of Pseudomonas bacteria of Piper tuberculatum regarding the production of potentially bio- stimulating compounds for plant growth. Acta Amazônica. 51: 10-19. http://dx.doi.org/10.1590/1809-4392202002311
  25. Oteino, N.; Lally, R. D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K. J.; Dowling, D. N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology. 6: 745. https://doi.org/10.3389/fmicb.2015.00745
  26. Rebello, F. K.; Costa, A. J. G.; Figueiro, C. L. M. (2011). Conjuntura da produção e comercialização do feijão caupi no Nordeste Paraense: safra 2010. Contexto Amazônico. 4: 1-4.
  27. Ruiz-Hernandez, I. H.; Madrigal-Perez, L. A.; González-Hernandez, J. C. (2024). The potential use of Pseudomonas in terrestrial and space agriculture. Brazilian Journal of Biology. 84: e282664. https://doi.org/10.1590/1519-6984.282664
  28. Sá, M. N. F. (2019). Microbiolização na qualidade de sementes e crescimento de plantas de feijão-caupi. Trabalho de Conclusão de Curso–Bacharelado em Agronomia, Instituto Federal de Pernambuco. https://releia.ifsertao-pe.edu.br/jspui/handle/123456789/395
  29. Santoyo, G.; Moreno-Hagelsie, G.; Del Carmen Orozco-Mosqueta, M.; Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research. 183: 92-99. https://doi.org/10.1016/j.micres.2015.11.008
  30. Sembada, A. A.; Faizal, A.; Endah Sulistyawati, E. (2024). Photosynthesis efficiency as key factor in decision-making for forest design and redesign: A systematic literature review. Ecological Frontiers. 44(6): 1128–1139. http://dx.doi.org/10.1016/j.ecofro.2024.07.008
  31. Serrão, C. P.; Souza, C. R. B.; Albuquerque, L. P. C.; Ferreira, A. M.; Bandeira, O. N. S. (2025). Beneficial Pseudomonas bacteria: Genomics-related mechanisms of plant growth promotion and biocontrol. In: Parissa Taheri. (ed). Environmentally Safe Strategies for Plant Protection Against Biotic and Abiotic Stresses. PP. 59-83. 1st edition. Academic Press. 418p. https://doi.org/10.1016/B978-0-443-23818-5.00010-7
  32. Verma, J. P.; Jaiswal, D. K.; Gaurav, A. K.; Mukherjee, A.; Krishna, R.; Prudêncio de Araujo Pereira, A. (2023). Harnessing bacterial strain from rhizosphere to develop indigenous PGPR consortium for enhancing lobia (Vigna unguiculata) production. Heliyon. 9(3): e13804. https://doi.org/10.1016/j.heliyon.2023.e13804
  33. Zboralski, A.; Filion, M. (2023). Pseudomonas spp. can help plants face climate change. Frontiers in Microbiology. 14: 1198131. https://doi.org/10.3389/fmicb.2023.1198131

Downloads

Download data is not yet available.