Research Article
Vol. 42 No. 2 (2025): Revista de Ciencias Agrícolas - Second four, May - August 2025
Assessment of soil organic carbon fractions under sugarcane harvest residue management
Universidad Nacional abierta y a Distancia
Centro de Investigación de la Caña de Azúcar de Colombia - CENICAÑA
Universidad Nacional Abierta y a Distancia
Abstract
Labile carbon (LC), measured by Permanganate oxidizable Carbon (POXC) techniques, and mineralizable carbon (MC), assessed through microbial CO₂ flux, are soil organic carbon (SOC) fractions that serve as sensitive indicators of soil management practices and soil organic matter (SOM) composition. Thus, this type of study is necessary for managing soil fertility in sugarcane cultivation systems. The experiment was based on measuring SOC fractions with different percentages of crop residue removal (T1:0%, T2:20%, T3:40%, T4:60%, T5:80%, and T6:100%) in a Pachic Vertic Haplustolls soil whose plots had the crop variety CC 93 4418. The experimental design was Randomized Complete Blocks. Samples were collected at three depths during the seventh ratoon. The plant biomass variables were expressed in tons per hectare. The effects of treatments on LC and MC were compared using analysis of variance (P-value of 0.05 or less), the Tukey test, a Pearson correlation analysis among soil properties, and a conceptual analysis between LC and MC was established through least squares linear regression. The LC across the three depths recorded significant differences, with T2 exhibiting the highest value of 328.91(mg. kg-1) and T6 exhibiting the lowest average of 272.75 (mg. kg-1). High correlations were observed between LC and soil properties such as CEC, volumetric water content, and gravimetric water content. Treatments could be directed towards high accumulation for T1 and T2 and high mineralization for T6 based on the correlation between LC and MC. Regarding the productivity parameter, T2 showed a higher TCH (211.66) with a more significant percentage change in LC increase over time. It is concluded that a soil without cover presents high CM dynamics but with low nutrient storage reflected in the CL.
References
- Anderson, J.P.E. (1982). Soil respiration. In: Page, A.; Miller, R.; Keeney, D. Methods of soil analysis: Chemical and Microbiological properties. pp. 831-871. 2nd edition. Wisconsin: American Society of Agronomy Inc. 1159p.
- Campitelli, P.; Aoki, A.; Gudelj, O.; Rubenacker, A.; Sereno, R. (2010). Soil quality indicators of the effects of land use and agricultural practices in a pilot area of the central region of Córdoba. Revista Ciencia del suelo. 28(2): 223-231.
- Carbonell, J.; Quintero, R.; Torres, J.; Osorio, C.; Isaacs, C.; Victoria, J. (2011). Zonificación agroecológica para el cultivo de la caña de azúcar en el valle del rio Cauca (cuarta aproximación). Principios metodológicos y aplicaciones. 4th edition. Cali: Cenicaña. 119p.
- Collins, H.; Smith, J.; Fransen, S.; Alva, A.; Kruger C.; Granatstein, D. (2010). Carbon sequestration under irrigated switchgrass (Panicum virgatum L.) production. Soil Science Society of America Journal. 74(6): 2049-2058. https://doi.org/10.2136/sssaj2010.0020
- Culman, S.; Freeman, M.; Snapp, S. (2012). Procedure for the determination of permanganate oxidizable carbon. Kellogg Biological Station-Long Term Ecological Research Protocols, Hickory Corners, MI. https://acsess.onlinelibrary.wiley.com/doi/epdf/10.2136/sssaj2011.0286 http://lter.kbs.msu.edu/protocols/133.
- Delgado Restrepo, O. M.; Menjivar Flores, J. C.: Muñoz Arboleda, F. (2016). Influence of management systems on the nitrogen mineralization and fertilization of sugarcane. Revista Facultad Nacional de Agronomia Medellín. 69(1): 7755-7762. https://doi.org/10.15446/rfna.v69n1.54742
- Dou, F.; Wright, A.L.; Hons, F.M. (2008). Sensitivity of labile soil organic carbon to tillage in wheat-based cropping systems. Soil Science Society of America Journal. 72(5): 1445-1453. https://doi.org/10.2136/sssaj2007.0230
- Fang, C.; Moncrieff, J. B. (2005). The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil. 268: 243-253. https://doi.org/10.1007/s11104-004-0278-4
- Food and Agriculture Organization-FAO. (2018). Soil organic carbon map - leaflet. https://openknowledge.fao.org/handle/20.500.14283/i8195en
- Franzluebbers, A. J.; Haney, R. L.; Honeycutt, C. W.; Schomberg, H. H.; Hons, F. M. (2000). Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Science Society of America Journal. 64(2): 613–623.
- https://doi.org/10.2136/sssaj2000.642613x
- Gregorich, E.G.; Carter, M.R.; Angers, D.A.; Monreall C.M.; Ellert, B.H. (1994). Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science. 74(4): 367–385. 10.4141/cjss94-051
- Guo, L.B.; Gifford, R.M. (2002). Soil carbon stocks and land use change: a meta-analysis. Global Change Biology. 8: 345-360. 10.1046/j.1354-1013
- Haney, R. L.; Hons, F. M.; Sanderson, M. A.; A. J. Franzluebbers. (2001). A rapid procedure for estimating nitrogen mineralization in manured soil. Biology and Fertility of Soils. 33: 100–104. https://doi.org/10.1007/s003740000294
- Hassink, J.; Bowman, L. A.; Zwart K. B.; Bloem, J.; Brussaard, L. (1993). Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma. 57: 105:128.
- 1016/0016-7061(93)90150-J
- Haynes, R.J. (2000). Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology and. Biochemistry. 32(2): 211-219. 10.1016/S0038-0717(99)00148-0
- Hurisso T.; Culman S. (2016). Comparison of Permanganate-Oxidizable Carbon and Mineralizable Carbon for Assessment of Organic Matter Stabilization and Mineralization. Soil Science Society of America Journal. 80(5): 1352–1364. 10.2136/sssaj2016.04.0106
- Manna, M. C.; Jha, S.; Ghosh, P. K.; Acharya, C. L. (2003). Comparative efficiency of three epigeic earthworms under different deciduous forest litters decomposition. Bioresource Technology. 88 (3): 197-206. 10.1016/S0960-8524(02)00318-8
- Martínez, E.; Fuentes, J. P.; Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de la ciencia del suelo y nutrición vegetal. 8 (1): 68-96. 10.4067/S0718-27912008000100006
- Mikutta, R.; Kleber, M.; Kaiser, K.; Jahn, R. (2005). Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochloride, and disodium perodisulfate. Soil Science Society of America Journal. 69(1):120–135.
- 2136/sssaj2005.0120
- Moorhead, D.L.; Callaghan, T. (1994). Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: a synthesis and modelling study. Biology and Fertility Soils. 18(1): 19–26. 10.1007/BF00336439.
- Morris, D. (2005). Dry matter allocation and root morphology of sugarcane, sawgrass, and st. augustinegrass due to water-table depth. Soil and Crop Science Society of Florida Proceedings. 64: 80-86.
- Ortega, S.F. (1982). La materia orgánica de los suelos y el humus de los suelos de Cuba. 1o ed. La Habana: Academia de Ciencias de Cuba. 126p.
- Prieto, M. J.; Prieto G. F.; Acevedo O. A. (2014). Variabilidad espacial de la materia orgánica en un suelo dedicado al cultivo de cebada maltera (Hordeum distichum L.). Revista Facultad de Ingeniería Universidad de Antioquia. 71: 141-152. 10.17533/udea.redin.14020
- Robert, M. (2002). Captura de carbono en los suelos para un mejor manejo de la tierra. https://www.fao.org/4/y2779s/y2779s00.htm
- Sanclemente Reyes, O. E.; Ararat Orozco, M. C.; De la cruz Cardona, C. A. (2015). Contribución de Vigna unguiculata L. a la sustentabilidad de sistemas de cultivo de caña de azúcar. Revista De Investigación Agraria Y Ambiental. 6(2): 47 - 56. 10.22490/21456453.1404.
- Six J.; Callewaer, P.; Lenders, S.; De Gryze, S.; Gregorich, E. G.; K. Paustian. (2002). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal. 66(6): 1981-1987. 10.2136/sssaj2002.1981
- Schnurer, J.; Clarholm, M.; Rosswall, T. (1985). Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biology and Biochemistry. 17(5): 611-618. 10.1016/0038-0717(85)90036-7
- Stevenson, F.; Cole M. (1999). Cycles of soil. 2o ed. New York: John Wiley & Sons. .448p.
- Tan, Z.; Lal, R.; Owens, L.; Izaurralde, R.C. (2007). Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil and Tillage Research. 92(1): 53-59. 10.1016/j.still.2006.01.003
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. (2003). Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture. 18(1): 3–17. 10.1079/AJAA200228
Downloads
Download data is not yet available.