Effects of the features of the videos on YouTube that increase their popularity: an empirical analysis

Authors

DOI:

https://doi.org/10.22267/rtend.202102.153

Keywords:

marketing, advertising, negative binomial regression, YouTube

Abstract

YouTube is the most visited multimedia platform in the world; ideal setting for promoting products and services. The literature has been concerned with identifying elements that favor the popularity of videos on this platform; however, it is still rare. This research establishes the effects of the message strategy, brand consistency and technical elements of resolution and duration of the videos on popularity, understood as the volume of reproductions of each video published by mobile phone companies. Content analysis was used to identify the aforementioned characteristics and, using a negative binomial regression model, the hypotheses were tested. The findings showed that functional and emotional content strategies, brand consistency, and video resolution increase the volume of views. On the other hand, the length of the video decreases the reproduction rate. These results may be useful when developing strategies for the dissemination of advertising pieces on YouTube by mobile phone companies, however, future studies could analyze other industries to contrast the results obtained.

Downloads

Download data is not yet available.

Author Biographies

Carlos Fernando Osorio-Andrade, University of Valle

Master in Organization Sciences, University of Valle. Member of the Marketing Research Group, Category A of Colciencias, University of Valle. ORCiD: 0000-0002-5095-4991. E-mail: carlos.fernando.osorio@correounivalle.edu.co, Colombia.

 

Augusto Rodríguez-Orejuela, University of Valle

Doctor in Business Sciences, University of Murcia, Spain. Titular Professor University of Valle. Director of the Marketing Research Group, Category A of Colciencias University of Valle. ORCiD: 0000-0003-2865-1748. E-mail: augusto.rodriguez@correounivalle.edu.co, Colombia.

Fernando Moreno-Betancourt, University of Valle

Master in Business Administration from University of Valle. Professor University of Valle. ORCiD: 0000-0002-3281-7918. Email: fernando.moreno.b@correounivalle.edu.co, Colombia.

References

(1) Abitbol, A., & Lee, S. (2017). Messages on CSR-dedicated Facebook pages: What works and what doesn’t. Public Relations Review, 43(4), 796-808. https://doi.org/10.1016/j.pubrev.2017.05.002

(2) Ahmad, U., Zahid, A., Shoaib, M., & AlAmri, A. (2017). HarVis: An integrated social media content analysis framework for YouTube platform. Information Systems, 69, 25-39. https://doi.org/10.1016/j.is.2016.10.004

(3) Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi,org/10.1109/TAC.1974.1100705

(4) Borghol, N., Ardon, S., Carlsson, N., Eager, D., & Mahanti, A. (2012). The untold story of the clones: content-agnostic factors that impact YouTube video popularity. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. https://doi.org/10.1145/2339530.2339717

(5) Brasel, S. (2012). How focused identities can help brands navigate a changing media landscape. Business Horizons, 55(3), 283-291. Beijin, China. https://doi.org/10.1016/j.bushor.2012.01.005

(6) Cameron, A., & Trivedi, P. (2013). Regression Analysis of Count Data (2.ªed.). Cambridge University Press.

(7) Coxe, S., West, S., & Aiken, L. (2009). The Analysis of Count Data: A Gentle Introduction to Poisson Regression and Its Alternatives. Journal of Personality Assessment, 91(2), 121-136. https://doi.org/10.1080/00223890802634175

(8) De Vries, L., Gensler, S., & Leeflang, P. (2012). Popularity of Brand Posts on Brand Fan Pages: An Investigation of the Effects of Social Media Marketing. Journal of Interactive Marketing, 26(2), 83-91. https://doi.org/10.1016/j.intmar.2012.01.003

(9) Dehghani, M., Khorram, M., Ramezani, I., & Sali, R. (2016). Evaluating the influence of YouTube advertising for attraction of young customers. Computers in Human Behavior, 59, 165-172. https://doi.org/10.1016/j.chb.2016.01.037

(10) eMarketer (2019). Key Digital Trends H2 2019. Five Trends to Track as We Head Into 2020. https://bit.ly/3bPRk8x

(11) Figueiredo, F., Almeida, J., Gonçalves, M., & Benevenuto, F. (2014). On the dynamics of social media popularity: A YouTube case study. ACM Transactions on Internet Technology (TOIT), 14(4), 1-21. https://bit.ly/3bFEppz

(12) Gupta, H., Singth, S., & Sinha, P. (2017). Multimedia tool as a predictor for social media advertising - a YouTube way. Multimedia Tools and Applications, 76(18), 18557–18568. https://doi.org/10.1007/s11042-016-4249-6

(13) Hair, J., Black, W., Babin, B., & Anderson, R. (2013). Multivariate data analysis (7.ªed.). Prentice Hall.

(14) Jáugueri, D. (2018, enero 9). Claro tiene la atención al cliente más deficiente de la telefonía móvil según encuesta de LR. La República. https://bit.ly/2zbc2lF

(15) Kemp., S. (2019, 30 de enero). Digital 2019: Global Internet Use Accelerates. We Are Social Inc. https://bit.ly/3cK7n92

(16) Kim, J., Guo, P., Seaton, D., Mitros, P., Gajos, K., & Miller, R. (2014). Understanding in-video dropouts and interaction peaks inonline lecture videos. Proceedings of the first ACM conference on Learning@ scale conference. Atlanta, USA. https://dl.acm.org/doi/10.1145/2556325.2566237

(17) Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage Publications.

(18) Lee, C., & Ma, L. (2012). News sharing in social media: The effect of gratifications and prior experience. Computers in human behavior, 28(2), 331-339. https://doi.org/10.1016/j.chb.2011.10.002

(19) Londoño-Silva, A. M., Osorio-Andrade, C. F. y Peláez-Muñoz, J. P. (2020). Efectos del lenguaje publicitario y del destino turístico usados en páginas comerciales de Facebook sobre la generación de boca a boca electrónico. Estudios Gerenciales, 36(156), 264-271. https://doi.org/10.18046/j.estger.2020.156.3895

(20) Mudzanani, T. (2015). A review and analysis of the role of integrated marketing communication message typology in the development of communication strategies. African Journal of Marketing Management, 7(8), 90-97. https://doi.org/10.5897/AJMM2015.0475

(21) Navarro, A., Utzet, F., Puig, P., Caminal, J. y Martín, M. (2001). La distribución binomial negativa frente a la de Poisson en el análisis de fenómenos recurrentes. Gaceta Sanitaria, 15(5), 447-452. https://doi.org/10.1016/S0213-9111(01)71599-3

(22) Schultz, C. (2017). Proposing to your fans: Which brand post characteristics drive consumer engagement activities on social media brand pages? Electronic Commerce Research and Applications, 26, 23-24. https://doi.org/10.1016/j.elerap.2017.09.005

(23) Scott, J., & Freese, J. (2014). Regression Models for Categorical Dependent Variables Using Stata (2.ªed.). Stata Press.

(24) Shoufan, A., & Mohamed, F. (2017). On the likes and dislikes of youtube’s educational videos: A quantitative study. Proceedings of the 18th annual conference on information technology education. New York, USA. https://bit.ly/2TjCUqv

(25) Socialbakers. (2019). YouTube stats - Brands in Colombia. https://bit.ly/3bKJIDU

(26) Steffes, S., Lee, J., & Lee, S. (2014). Consumer-generated ads on Youtube: impacts of source credibility and need for cognition on attitudes, interactive behaviors, and ewom. Journal of Electronic Commerce Research, 15(3), 254-266. http://www.jecr.org/sites/default/files/Paper9.pdf

(27) Tafesse, W. (2015). Content strategies and audience response on Facebook brand pages. Marketing Intelligence and Planning, 33(6), 927-943. https://doi.org/10.1108/MIP-07-2014-0135

(28) Ten Hove, P., & Van Der Meij, H. (2015). Like It or Not. What Characterizes YouTube’s More Popular Instructional Videos? Technical Communication, 62(1), 48-62. https://bit.ly/3g1AjeH

(29) Tuells, J., Martínez-Martínez, P., Duro-Torrijos, J., Caballero, P., Fraga-Freijeiro, P. y Navarro-López, V. (2015). Características de los vídeos en español publicados en Youtube sobre la vacuna contra el virus del papiloma humano. Revista Española de Salud Pública, 89(1), 107-115. https://doi.org/10.4321/S1135-57272015000100012

(30) Voorveld, H., Neijens, P., & Smit, E. (2011). Opening the black box: Understanding cross-media effects. Journal of Marketing Communications, 17(2), 69-85. https://doi.org/10.1080/13527260903160460

(31) Welbourne, D., & Grant, W. (2016). Science communication on YouTube: Factors that affect channel and video popularity. Public Understanding of Science, 25(6), 706-718. https://doi.org/10.1177%2F0963662515572068

Published

2021-01-01

How to Cite

Osorio-Andrade, C. F., Rodríguez-Orejuela, A., & Moreno-Betancourt, F. (2021). Effects of the features of the videos on YouTube that increase their popularity: an empirical analysis. Tendencias, 22(1), 18–38. https://doi.org/10.22267/rtend.202102.153